您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 70-79.doi: 10.6040/j.issn.1672-3961.0.2021.152

• • 上一篇    

坡顶荷载作用下废旧轮胎条带加筋边坡承载特性

章清涛1,刘晓威2,高健1,孙玉海2,闫庆亮1,刘源3,王昊4*   

  1. 1.山东高速股份有限公司, 山东 济南 250014;2.山东省交通规划设计院集团有限公司, 山东 济南 250031;3.武汉铁路地产置业有限公司, 湖北 武汉 430072;4.山东大学齐鲁交通学院, 山东 济南 250061
  • 发布日期:2022-06-23
  • 作者简介:章清涛(1975— ),男,山东济南人,高级工程师,硕士,主要研究方向为高速公路(新建、改扩建)工程建设管理. E-mail:zhang_qt@163.com. *通信作者简介:王昊(1999— ),男,安徽亳州人,硕士研究生,主要研究方向为固废利用. E-mail:2579348445@qq.com

Bearing capacities of reinforced slope with scrap tire strips under vertical loading

ZHANG Qingtao1, LIU Xiaowei2, GAO Jian1, SUN Yuhai2, YAN Qingliang1, LIU Yuan3, WANG Hao4*   

  1. 1. Shangdong Hi-Speed Company Co., Ltd., Jinan 250014, Shandong, China;
    2. Shandong Provincial Communications Planning and Design Insitute, Jinan 250031, Shandong, China;
    3.Wuhan Railway Real Estate Co., Ltd., Wuhan 430072, Hubei, China;
    4. School of Qilu Transportation, Shandong University, Jinan 250061, Shandong, China
  • Published:2022-06-23

摘要: 为揭示废旧轮胎条带加筋边坡的承载特性,确定关键影响因素,开展坡顶竖向荷载作用下废旧轮胎条带加筋边坡承载特性模型试验与数值模拟分析,研究加筋层数、条带长度、间距等因素对边坡承载力、沉降与侧向变形的影响规律。结果表明:相比较自然填土边坡,废旧轮胎条带加筋边坡可有效改善边坡内部应力,增强加筋边坡的侧向约束效应,进而提高边坡的竖向受荷承载能力及边坡稳定性,提高幅度随加筋层数的增多而近似线性增大。随着条带长度的增加,加筋边坡的竖向承载能力得以提高,但当长宽比L/B≥4时,承载能力趋于稳定。废旧轮胎横向及竖向间距对加筋边坡极限承载力具有一定的影响,但提高幅度不显著,设计时可在合理控制范围内取较大间距。研究结果可为废旧轮胎条带在加筋土边坡中的工程应用与设计提供良好的借鉴意义。

关键词: 加筋边坡, 废旧轮胎条带, 竖向受荷, 模型试验, 数值模拟

中图分类号: 

  • U416.1
[1] LIU L L, CAI G J, ZHANG J, et al. Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: a compressive review[J]. Renewable and Sustainable Energy Reviews, 2020, 126: 109831.
[2] 刘源. 废旧轮胎条带加筋土力学特性及在边坡中的应用研究[D]. 济南:山东大学, 2019. LIU Yuan. Study on mechanical properties of reinforced tire strips and its application in slope[D]. Jinan: Shandong University, 2019.
[3] ROMERO-FLORES M, BECERRA-LUCATERO L M, SALMON-FOLGUERAS R, et al. Thermal performance of scrap tire blocks as roof insulator[J]. Energy and Buildings, 2017, 149: 384-390.
[4] 邱敬贤,何曦,戴欣,等. 废旧轮胎处理技术的研究进展[J]. 中国环保产业, 2020(12):18-22. QIU Jingxian, HE Xi, DAI Xin, et al. Research progress on waste tire treatment technologies[J]. China Environmental Protection Industry, 2020(12):18-22.
[5] 李丽华,肖衡林,唐辉明,等. 轮胎碎片-砂混合土抗剪性能优化试验研究[J].岩土力学, 2013, 34(4): 1063-1067. LI Lihua, XIAO Henglin, TANG Huiming, et al. Shear performance optimizing of tire shred-sand mixture[J]. Rock and Soil Mechanics, 2013, 34(4):1063-1067.
[6] 徐超,孟凡祥. 剪切速率和材料特性对筋-土界面抗剪强度的影响[J]. 岩土力学, 2010, 31(10):3101-3106. XU Chao, MENG Fanxiang. Effects of shear rate and material properties on shear strength of geosynthetic-soil interface [J]. Rock and Soil Mechanics, 2010, 31(10):3101-3106.
[7] 曹文昭,郑俊杰,周燕君.双向和三向土工格栅筋土界面特性对比试验研究[J].湖南大学学报(自然科学版),2019,46(1):109-116. CAO Wenzhao, ZHENG Junjie, ZHOU Yanjun. Comparative experimental investigation of geogrid soil interface behavior of biaxial and triaxial geogrid[J]. Journal of Hunan University(Natural Sciences), 2019, 46(1):109-116.
[8] MORACI N, GIOFFRE D. A simple method to evaluate the pullout resistance of extruded geogrids embedded in a compacted granular soil[J]. Geotextiles and Geomem-branes, 2006, 24(2): 116-128.
[9] 邱毅,余强,陈强,等. 土工格栅和土工格室加筋在公路拓宽工程中的应用对比分析[J].公路交通技术,2020,36(3):7-13. QIU Yi, YU Qiang, CHEN Qiang, et al. Comparative of reinforcement properties with geocells and geogrids for highway-widening engineering[J].Technology of Highway and Transport, 2020, 36(3):7-13.
[10] 周燕锋,陈德立,陈致富. 土工格栅加筋边坡稳定分析[J].盐城工学院学报(自然科学版), 2015, 28(2):69-74. ZHOU Yanfeng, CHEN Deli, CHEN Zhifu. The stability analysis or the geogrid-reinforced slope[J]. Journal of Yancheng Institute of Technology(Natural Science Edition), 2015, 28(2):69-74.
[11] 孙龙. 废旧轮胎加筋边坡力学特性试验研究[D].武汉, 湖北工业大学, 2013. SUN Long. Experimental study on mechanical properties of tire-reinforced slope[D]. Wuhan: Hubei University of Technology, 2013.
[12] LI L H, CHEN Y J, FERREIRA P, et al. Experimental investigations on the pull-out behavior of tire strips reinforced sands[J]. Materials, 2017, 10(7):707.
[13] TAJABADIPOUR M, DEHGHANI M, KALANTARI B, et al. Laboratory pullout investigation for evaluate feasibility use of scrap tire as reinforcement element in mechanically stabilized earth walls[J]. Journal of Cleaner Production, 2019, 237: 117726.
[14] 张苡铭. 双向土工格栅加筋路堤影响因素研究[D].武汉:武汉理工大学,2007. ZHANG Yiming. Research on the influence factor on reinforced embankment with bidirectional geogrids[D]. Wuhan: Wuhan University of Technology, 2007.
[15] SOMMERS A N, VISWANADHAM B V S. Centrifuge model tests on the behavior of strip footing on geotextile-reinforced slopes[J]. Geotextiles and Geomembranes, 2009, 27(6): 497-505.
[16] LEE K M, MANJUNATH V R. Experimental and numerical studies of geosynthetic-reinforced sand slopes loaded with a footing[J]. Canadian Geotechnical Journal, 2000, 37(4): 828-842.
[17] 杨庆,季大雪,栾茂田, 等. 土工格栅加筋路堤边坡结构性能模型试验研究[J]. 岩土力学, 2005(8): 1243-1246. YANG Qing, JI Daxue, LUAN Maotian, et al. Studies on structural performance of embankment slopes reinforced by geogrids with model tests [J]. Rock and Soil Mechanics, 2005(8): 1243-1246.
[18] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry(PIV)and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631.
[19] 交通运输部公路科学研究院.公路土工试验规程:JTG 3430—2020[S]. 北京:人民交通出版社,2020. China Academy of Transportation Science. Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020.
[20] 郑刚,于晓旋,杜娟,等. 临近边坡的条形基础地基极限承载力数值分析[J].岩土力学, 2018, 39(10):3812-3820. ZHENG Gang, YU Xiaoxuan, DU Juan, et al. Numerical analysis of ultimate bearing capacity of strip footings near slopes[J]. Rock and Soil Mechanics, 2018, 39(10):3812-3820.
[21] ZHANG H B, YUAN X F, LIU Y, et al. Experimental study on the pullout behavior of scrap tire strips and their application as soil reinforcement[J]. Construction and Building Materials, 2020, 254: 119288.
[1] 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92.
[2] 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41.
[3] 卢光兆,周博,徐锋,上官伟,王刚,张书博. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报 (工学版), 2021, 51(4): 61-70.
[4] 宋修广,赵一民,张宏博,杨振宇,杨强. 加筋路堤下涵洞土压力分布规律及计算方法[J]. 山东大学学报 (工学版), 2021, 51(4): 43-53.
[5] 李晓亮,刘源,李玉鑫,江建宏,魏琨,张宏博. 砂土介质中废旧轮胎加筋条带拉拔特性[J]. 山东大学学报 (工学版), 2021, 51(4): 54-60.
[6] 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51.
[7] 王春国. 硬岩隧道施工通风系统优化与抑尘效果评价[J]. 山东大学学报 (工学版), 2021, 51(3): 52-60.
[8] 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38.
[9] 徐再根,刘正伟,刘文棚,周梦瑶,刘俊才,田利. 输电塔单双角钢过渡节点计算方法[J]. 山东大学学报 (工学版), 2021, 51(1): 87-93.
[10] 苏思博,王国清,贾献卓,李志聪,黄志刚. 剪跨比对插槽式连接空心管墩抗震性能影响[J]. 山东大学学报 (工学版), 2021, 51(1): 39-45.
[11] 闫吉庆,王效嘉,田茂诚. 含不凝气蒸汽在锯齿形表面的凝结传热特性[J]. 山东大学学报 (工学版), 2020, 50(6): 129-134.
[12] 曹洪振,祁金胜,袁宝强,杜文静,王湛. 偏心方圆节扩散管数值模拟[J]. 山东大学学报 (工学版), 2020, 50(5): 77-82.
[13] 祁金胜,曹洪振,石岩,杜文静,王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69, 76.
[14] 陈禹成,王朝阳,郭明,林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报 (工学版), 2020, 50(5): 33-43.
[15] 王春国. 偏压大跨小净距公路隧道施工力学行为[J]. 山东大学学报 (工学版), 2020, 50(4): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!