您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (6): 129-134.doi: 10.6040/j.issn.1672-3961.0.2020.295

• • 上一篇    

含不凝气蒸汽在锯齿形表面的凝结传热特性

闫吉庆1,王效嘉2,田茂诚2   

  1. 1.中国神华国际工程有限公司, 北京 100007;2. 山东大学能源与动力工程学院, 山东 济南 250061
  • 发布日期:2020-12-15
  • 作者简介:闫吉庆(1965— ),男,山东德州人,高级工程师,硕士,主要研究方向为强化传热. E-mail:yanjq9017@163.com

Condensation heat transfer characteristics of steam containing non-condensable gas on sawtooth surface

YAN Jiqing1, WANG Xiaojia2, TIAN Maocheng2   

  1. 1. Shenhua Engineering Technology Co., Ltd., Beijing 100007, China;
    2. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2020-12-15

摘要: 为了在含不凝气蒸汽凝结过程中获得更高的热效率,提出新型锯齿形强化板并建立其二维模型,使用Fluent软件对锯齿形强化板和相同规格波纹板的凝结传热特性进行对比研究。建立可同时计算不凝气层及液膜层的凝结传热模型并在数值模拟中通过用户自定义函数进行编译,模型的可靠性通过和相同工况下的试验进行对比得到验证。数值模拟得到两种板型表面的两相流动及热质交换特征,发现相比于波纹板,锯齿形板能够显著提高不凝气层的紊流度,利于相界面处传热传质过程的进行;锯齿形板的液膜会在波节的齿峰处产生周期性的断裂后在下游壁面上重新形成并在波谷处达到最大厚度;相比于波纹板,在所研究工况内锯齿形板的换热能力总体提高60%以上。

关键词: 锯齿形板, 数值模拟, 凝结传热, 不凝气, 液膜

Abstract: To obtain higher thermal efficiency in the condensation process of steam containing non-condensing gas, a new sawtooth heat transfer strengthening plate was proposed and its two-dimensional model was established. The difference of condensation heat transfer characteristics between serrated plate and corrugated plate with the same specification was analyzed by Fluent software. A condensation heat transfer model to calculate both non-condensable gas layer and liquid film layer at the same time was established and compiled by user defined functions in the numerical simulation. The model reliability was verified by comparing with the experimental values in the same working conditions. The two-phase flow and heat and mass transfer characteristics of different plate surfaces are obtained, and the results showed that compared with the corrugated plate, the sawtooth plate could significantly improve the turbulence of the non-condensable gas layer, which was beneficial to the heat and mass transfer process on the liquid film surface. The liquid film of the sawtooth plate would be periodically fractured at the tooth peak of the wave node and then re-formed on the downstream wall surface and reached the maximum thickness at the trough. Compared with the corrugated plate, the heat transfer capacity of the sawtooth plate was improved by more than 60%.

Key words: sawtooth plate, numerical calculation, condensation heat transfer, non-condensable gas, liquid film

中图分类号: 

  • TK124
[1] MINKOWYCZ W J, SPARROW E M. Condensation heat trans-fer in the presence of noncondensables, interfacial resis-tance, superheating, variable properties, and diffusion[J]. International Journal of Heat and Mass Transfer, 1966, 9(10): 1125-1144.
[2] 杨宇伟.伴随有凝结发生的椭圆管外对流换热特性的数值研究[D].太原:太原理工大学,2016. YANG Yuwei. Numerical simulation on heat performance outside of elliptical tube heat exchanger with steam condensation[D]. Taiyuan: Taiyuan University of Tech-nology, 2016.
[3] ZSCHAECK G, FRANK T, BURNS A D. CFD modelling and vali-dation of wall condensation in the presence of non-conden-sable gases[J]. Nuclear Engineering and Design, 2014, 279: 137-146.
[4] CHANTANA C, KUMAR S. Experimental and theoretical investigation of air-steam condensation in a vertical tube at low inlet steam fractions[J]. Applied Thermal Engin-eering, 2013, 54(2): 399-412.
[5] SIOW E C, ORMISTON S J, SOLIMAM H M. Two-phase modelling of laminar film condensation from vapour-gas mixtures in declining parallel-plate channels[J]. International Journal of Thermal Sciences, 2007, 46(5): 458-466.
[6] ZHANG Lili, ZHANG Guanmin, TIAN Maocheng, et al. Modeling of laminar filmwise condensation of methane with nitrogen on an isothermal vertical plate[J]. International Communications in Heat and Mass Transfer, 2019, 105: 10-18.
[7] WANG Yungang, ZHAO Qinxin, ZHOU Qulan, et al. Experimental and numerical studies on actual flue gas condensation heat transfer in a left-right symmetric internally finned tube[J]. International Journal of Heat and Mass Transfer, 2013, 64: 10-20.
[8] GANGULI A, PATEL A G, MAHESHWARI N K, et al. Theoretical modeling of condensation of steam outside different vertical geometries(tube, flat plates)in the presence of noncondensable gases like air and helium[J]. Nuclear Engineering and Design, 2008, 238(9): 2328-2340.
[9] KEKAULA K, CHEN Y, MA T, et al. Numerical investigation of condensation in inclined tube air-cooled condensers[J]. Applied Thermal Engineering, 2017, 118: 418-429.
[10] HAMMOUDI D, BENABDESSELAM A, AZZI A, et al. Numerical modeling of steam condensation in vertical channel in presence of noncondensable gas[J]. International Journal of Thermal Sciences, 2018, 126: 263-271.
[11] WANG Xianmao, CHANG Huajian, CORRADIMI M. A CFD study of wave influence on film steam condensation in the presence of noncondensable gas[J]. Nuclear Engineering and Design, 2016, 305: 303-313.
[12] HUANG Jian, ZHANG Junxia, WANG Li. Review of vapor condensation heat and mass transfer in the presence of non-condensable gas[J]. Applied Thermal Engineering, 2015, 89: 469-484.
[13] XU Huiqiang, GU Haifeng, SUN Zhongning. Forced convection condensation of steam in the presence of multicomponent noncondensable gases inside a horizontal tube[J]. International Journal of Heat and Mass Transfer, 2017, 104: 1110-1119.
[14] TANG G, HU H, ZHUANG Z, et al. Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas[J]. Applied Thermal Engineering. 2012, 36: 414-425.
[15] 贾文华. 异形管内混合气体流动凝结换热特性数值模拟[D]. 济南:山东大学, 2019. JIA Wenhua. Numerical analysis on the heat transfer and flow characteristics of condensation in special type heat exchange tube about the mixed gas[D]. Jinan: Shandong University, 2019.
[16] OH S, REVANKAR S T. Experimental and theoretical investigation of film condensation with noncondensable gas[J]. International Journal of Heat and Mass Transfer, 2006, 49(15): 2523-2534.
[17] 唐亮亮. 纯蒸汽与含不凝气蒸汽气泡冷凝过程的数值模拟[D]. 济南:山东大学, 2018. TANG Liangliang. Numerical analysis on condensing process of the steam and the air-steam mixture bubble[D]. Jinan: Shandong University, 2018.
[18] PUNETHA M, KHANDEKAR S. A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases[J]. Nuclear Engineering and Design, 2017, 324: 280-296.
[19] 衣秋杰. 竖壁外含不凝气体蒸汽凝结传热特性研究[D]. 济南:山东大学, 2018. YI Qiujie. Investigation on the mechanism of steam con-densation heat and mass transfer with non-condensable gas on vertical plate[D]. Jinan: Shandong University, 2018.
[20] YI Qiujie, TIAN Maocheng, YAN Weijie, et al. Visualization study of the influence of non-condensable gas on steam con-densation heat transfer[J]. Applied Thermal Engineering, 2016, 106: 13-21.
[21] CHEN Xianbing, TIAN Maocheng, QU Xiaohang, et al. Numerical investigation on the interfacial characteristics of steam jet condensation in subcooled water flow in a restricted channel[J]. International Journal of Heat and Mass Transfer, 2019, 137: 908-921.
[1] 陈禹成,王朝阳,郭明,林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报 (工学版), 2020, 50(5): 33-43.
[2] 祁金胜,曹洪振,石岩,杜文静,王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69, 76.
[3] 曹洪振,祁金胜,袁宝强,杜文静,王湛. 偏心方圆节扩散管数值模拟[J]. 山东大学学报 (工学版), 2020, 50(5): 77-82.
[4] 王春国. 偏压大跨小净距公路隧道施工力学行为[J]. 山东大学学报 (工学版), 2020, 50(4): 85-89.
[5] 胡伟. 基于孔隙尺度下丝网多孔介质通道流阻特性[J]. 山东大学学报 (工学版), 2019, 49(6): 119-126.
[6] 刘明才. 大断面小净距公路隧道施工影响分析[J]. 山东大学学报 (工学版), 2019, 49(4): 78-85.
[7] 周慧琳,邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报 (工学版), 2019, 49(4): 99-107.
[8] 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106.
[9] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[10] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[11] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[12] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
[13] 郑林彬,王建明,何讯超. 2024铝合金喷丸粗糙度试验与数值模拟[J]. 山东大学学报(工学版), 2017, 47(1): 84-89.
[14] 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58.
[15] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!