您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (5): 33-43.doi: 10.6040/j.issn.1672-3961.0.2020.042

• • 上一篇    

隐伏溶洞对隧道围岩稳定性影响规律及处治技术

陈禹成1,王朝阳2,郭明3,林鹏2*   

  1. 1. 湖北交投鄂西高速公路建设管理有限公司, 湖北 恩施 445000;2. 山东大学岩土与结构工程研究中心, 山东 济南 250100;3. 中铁工程设计咨询集团有限公司郑州设计院, 河南 郑州 450001
  • 发布日期:2020-10-19
  • 作者简介:陈禹成(1975— ),男,湖北衡阳人,高级工程师,主要研究方向为隧道工程技术与管理. E-mail:41173674@qq.com. *通信作者简介:林鹏(1989— ),男,山东潍坊人,博士,博士后,主要研究方向为隧道及地下工程地质灾害预测预报与处治. E-mail:sddxytlp@sdu.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(2013CB036000)

Influence of concealed karst cave on surrounding rock stability and its treatment technology

CHEN Yucheng1, WANG Zhaoyang2, GUO Ming3, LIN Peng2*   

  1. 1. E-Xi Expressway Construction Headquarters of Hubei Province, Enshi 445000, Hubei, China;
    2. Geotechnical &
    Structural Engineering Research Center, Shandong University, Jinan 250100, Shandong, China;
    3. Zhengzhou Design Institute, China Railway Engineering Design Consulting Group Co., Ltd., Zhengzhou 450001, Henan, China
  • Published:2020-10-19

摘要: 以鄂西山区隧道工程实例为依托,在溶洞调查与统计分析的基础上,从岩溶的溶洞体积、形态特征、溶腔充填物特征以及涌水通道类型等方面,对鄂西山区岩溶进行分类,得到鄂西山区岩溶发育特征,即溶腔体积不等、形态多样、溶腔充填物种类多、涌水通道复杂。采用数值模拟方法,分析不同位置的隐伏溶洞对隧道围岩的应力场、位移场影响情况,得出随隐伏岩溶位置变化,围岩应力分布有所不同;溶洞位置由隧道顶部向隧道底部变化过程中,隧道顶部围岩最大沉降由大到小依次为拱肩延长线、边墙一侧、拱脚延长线、拱顶上方、底板下方;随着溶洞位置的降低,隧道拱顶围岩水平最大收敛值由大到小依次为拱肩延长线、拱顶上方、边墙一侧、底板下方、拱脚延长线;随着溶洞位置的降低,隧道周边围岩沉降量由大到小均为拱顶、拱腰、拱脚、底板。基于岩溶类型特征、数值模拟围岩应力场、位移变化情况结果,提出岩溶区隧道揭露溶洞处治原则。以花果山隧道为例,开展溶洞处治原则与方法应用,提出针对性的处治方案。

关键词: 岩溶特征, 隐伏溶洞, 数值模拟, 花果山隧道, 鄂西山区

Abstract: On the basis of the investigation and statistical analysis of karst caves of tunnel project in E-Xi mountains area, they were classified according to the karst cave volume, shape, cavity filling material and water gushing channel type. The result presented that the karst cavities in the mountains area of E-Xi were of different sizes, various shapes, various cavity filling materials and complicated water gushing channel. The changes of stress field and displacement field of tunnel surrounding rock under the influence of different location of hidden karst cave were studied through numerical simulation analysis, which showed that the high stress area and low stress area of surrounding rock were different with different location of hidden karst cave. With the changes of location of karst cave, the maximum settlement value from large to small were spandrel extension line, sidewall, spandrel extension line, top of arch, bottom of slab. With the descend of the location of the karst cave, the distribution rule of the maximum horizontal convergence from large to small were spandrel extension line, above the arch crown, sidewall, below the bottom plate, spandrel extension line. With the descend of the location of the karst cave, the deformation law of surrounding rock the settlement of tunnel from large to small were vault, haunch, arch foot, base plate. Based on the characteristics of karst type, the results of numerical simulation of stress field and displacement change of surrounding rock, the prevention and control principles of karst cave were sorted out. Huaguoshan tunnel was taken as an example to explain in detail and the treatment scheme was put forward.

Key words: karst characteristics, covered karst cave, numerical simulation, Huaguoshan Tunnel, mountainous area of E-Xi

中图分类号: 

  • TD23
[1] 中国科学院地质研究所岩溶研究组. 中国岩溶研究[M]. 北京: 科学出版社, 1979.
[2] 许振浩, 李术才, 李利平, 等. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. 岩土力学, 2011,32(6):1757-1766. XU Zhenhao, LI Shucai, LI Liping, et al. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. Rock and Soil Mechanics, 2011, 32(6):1757-1766.
[3] 彭中凌, 许健, 韩国库, 等. 顶部隐伏溶洞对隧洞位移影响特征分析[J]. 甘肃农业大学学报, 2018,53(5):204-208. PENG Zhongling, XU Jian, HAN Guoku, et al. Influence of displacement characteristic of tunnel with concealed cave upside[J]. Journal of Gansu Agriculture University, 2018, 53(5):204-208.
[4] 孙寿榜, 严松宏. 隐伏溶洞隧道围岩稳定性数值分析与围岩变形动态监测[J]. 南阳理工学院学报, 2014,6(3):64-67. SUN Shoubang, YAN Songhong. Numerical analysis and dynamic monitoring of surrounding rock stability of concealed karst cave tunnel[J]. Journal of Nanyang Institute of Technology, 2014, 6(3):64-67.
[5] 廖秀宇. 德寨隧道隐伏溶洞对围岩稳定性影响分析[D].成都:成都理工大学, 2017. LIAO Xiuyu. The influence analysis of concealed karst cave on stability of surrounding rock in Dezhai Tunnel[D]. Chengdu: Chengdu University of Technology, 2017.
[6] 苏涛, 廖秀宇, 赵桦, 等.多隐伏溶洞对隧道围岩稳定性影响的数值模拟分析[J]. 内蒙古科技与经济, 2018(5):68-69. SU Tao, LIAO Xiuyu, ZHAO Hua, et al. Numerical simulation analysis of the influence of multiple concealed karst caves on the stability of tunnel surrounding rock[J]. Inner Mongolia Science Technology and Economy, 2018(5):68-69.
[7] 翁振奇, 蔡袁强, 孙宏磊.隐伏溶洞对隧道围岩稳定性的影响研究[J]. 科技通报, 2019,35(3):209-214. WENG Zhenqi, CAI Yuanqiang, SUN Honglei. Research on the influence of concealed karst caverns upon the stability of tunnels[J]. Bulletin of Science and Technology, 2019, 35(3):209-214.
[8] 邓昌林. 重载铁路隧底隐伏溶洞稳定性影响及处治技术研究[J]. 铁道建筑技术, 2019(10):115-118. DENG Changlin. Study on stability and technology of hidden caves at the bottom of karst tunnel in heavy-haul railway[J]. Railway Construction Technology, 2019(10):115-118.
[9] 刘惟庆, 乔雨, 薄婧方, 等. 鄂西恩施地区上二叠统大隆组泥质岩地球化学特征及对风化、物源和构造背景的指示[J]. 兰州大学学报(自然科学版), 2019,55(2):158-167. LIU Weiqing, QIAO Yu, BO Jingfang, et al. Geochemistry of mudstones from the upper permian dalong formation in the enshi area, western Hubei, and its implications for weathering, provenance and tectonic setting[J]. Journal of Lanzhou University(Natural Sciences), 2019, 55(2):158-167.
[10] 廖宗明, 李方会, 余立新, 等. 鄂西地区铅锌矿赋矿层位及控矿构造研究[J]. 资源环境与工程, 2008,22(6):559-564. LIAO Zongming, LI Fanghui, YU Lixin, et al. Study on ore-bearing strata and ore-controlling structure of Lead-Zinc Deposit in Western Hubei Province[J]. Resources Environment & Engineering, 2008, 22(6):559-564.
[11] 师天琛. 湘鄂西五峰-龙马溪组页岩气生烃地质条件研究[D]. 荆州:长江大学, 2018. SHI Tianchen. Geological conditions of shale gas generation of Wufeng-Longmaxi formation in Western Hunan-Hubei[D].Jingzhou: Yangtze University, 2018.
[12] 邱登峰, 周雁, 袁玉松, 等. 鄂西渝东区构造裂缝发育特征及力学机制[J]. 海相油气地质, 2016,21(4):51-59. QIU Dengfeng, ZHOU Yan, YUAN Yusong, et al. Characteristics and mechanism of structural fractures in western Hubei-Eastern Chongqing area[J]. Marine Origin Petroleum Geology, 2016, 21(4):51-59.
[13] 盛贤才, 王韶华, 文可东, 等. 鄂西渝东地区石柱古隆起构造沉积演化[J]. 海相油气地质, 2004(增刊1):43-52. SHENG Xiancai, WANG Shaohua, WEN Kedong, et al. Tectonics and sedimentology of shizhu palaeohigh in western Hubei-Eastern Chongqing area[J]. Marine Origin Petroleum Geology, 2004(Suppl.1):43-52.
[14] 黄汲清, 任纪舜, 姜春发, 等. 中国大地构造基本轮廓[J]. 地质学报, 1977(2):117-135. HUANG Jiqing, REN Jishun, JIANG Chunfa, et al. An outline of the tectonic characteristics of China[J]. Acta Geological Sinica, 1977(2):117-135.
[15] 任美锷, 刘振中. 岩溶学概论[M]. 北京: 商务印书馆, 1983.
[16] 张之淦. 岩溶发生学——理论探索[M]. 桂林: 广西师范大学出版社, 2006.
[17] 张英俊, 缪钟灵, 毛健全, 等. 应用岩溶学及洞穴学[M]. 贵阳: 贵州人民出版社, 1985.
[18] 袁道先. 中国岩溶学[M]. 北京: 地质出版社, 1994.
[19] 郭明. 隐伏溶洞对隧道围岩稳定性的影响规律及鄂西山区岩溶处治技术研究[D].济南:山东大学, 2014. GUO Ming. Study on concealed karst cave's influence on karst tunnel stability and treatment technology on tunnel of E-Xi Mountainous[D]. Jinan: Shandong University, 2014.
[20] 李术才, 许振浩, 黄鑫,等. 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J]. 岩石力学与工程学报, 2018,37(5):1041-1069. LI Shucai, XU Zhenhao, HUANG Xin, et al. Classification,geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5):1041-1069.
[21] 范波. 垫邻高速公路铜锣山隧道岩溶地段施工技术研究[D]. 西安:长安大学, 2008. FAN Bo. Study on the construction technology of karst are of TongLuoshan tunnel in DianLin expressway[D]. Xi'an: Chang'an University, 2008.
[22] 郭佳奇, 乔春生, 曹茜. 侧部高压富水溶腔与隧道间岩柱安全厚度的研究[J]. 现代隧道技术, 2010,47(6):10-16. GUO Jiaqi, QIAO Chunsheng, CAO Qian. Research on Safe thickness of rock pillar between the tunnel and adjacent karst cave with pressurise water[J]. Modern Tunnelling Technology, 2010, 47(6):10-16.
[23] 刘超群, 彭红君. 隧道掌子面与溶洞安全距离分析[J]. 现代隧道技术, 2012,49(3):109-113. LIU Chaoqun, PENG Hongjun. Analysis of the safe distance between a tunnel face and karst cave[J]. Modern Tunnelling Technology, 2012, 49(3):109-113.
[24] CRISS E M, CRISS R E, OSBURN G R. Effects of stress on cave passage shape in karst terranes[J]. Rock Mechanics and Rock Engineering, 2008, 41(3):499-505.
[25] 魏悦广. 用摄动法计算椭圆形巷道的弹塑性问题[J]. 工程力学, 1990(2):93-102. WEI Yueguang. Calculating elasto-plastic problem of elliptical tunnel with perturbation methods[J]. Engineering Mechanics, 1990(2):93-102.
[26] 马群. 溶洞对隧道围岩稳定性影响分析及其探测方法研究[D]. 重庆:重庆大学, 2016. MA Qun. Study on the influence of surrounding rock stability effected by karst cave and its detecting method[D]. Chongqing: Chongqing University, 2016.
[27] HUANG Xin, LI Shucai, XU Zhenhao, et al. Assessment of a concealed karst cave's influence on karst tunnel stability: a case study of the Huaguoshan Tunnel, China[J]. Sustainability, 2018, 10(7):21-32.
[1] 王春国. 偏压大跨小净距公路隧道施工力学行为[J]. 山东大学学报 (工学版), 2020, 50(4): 85-89.
[2] 胡伟. 基于孔隙尺度下丝网多孔介质通道流阻特性[J]. 山东大学学报 (工学版), 2019, 49(6): 119-126.
[3] 周慧琳,邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报 (工学版), 2019, 49(4): 99-107.
[4] 刘明才. 大断面小净距公路隧道施工影响分析[J]. 山东大学学报 (工学版), 2019, 49(4): 78-85.
[5] 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106.
[6] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[7] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[8] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[9] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
[10] 郑林彬,王建明,何讯超. 2024铝合金喷丸粗糙度试验与数值模拟[J]. 山东大学学报(工学版), 2017, 47(1): 84-89.
[11] 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58.
[12] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[13] 米春荣,李建明. 预应力混凝土管桩后注浆器的研制与应用[J]. 山东大学学报(工学版), 2016, 46(4): 89-95.
[14] 周乾,闫维明,纪金豹. 故宫灵沼轩钢结构动力特性与地震响应[J]. 山东大学学报(工学版), 2016, 46(1): 70-79.
[15] 汤潍泽, 欧金秋, 崔新壮, 楼俊杰, 肖溟, 张炯, 黄丹, 侯飞. 车载引起的沥青路面内动水压力现场试验研究[J]. 山东大学学报(工学版), 2015, 45(6): 84-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!