您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (5): 77-82.doi: 10.6040/j.issn.1672-3961.0.2020.169

• • 上一篇    

偏心方圆节扩散管数值模拟

曹洪振1,祁金胜1,袁宝强2,杜文静2,王湛2*   

  1. 1.山东电力工程咨询院有限公司, 山东 济南 250013;2.山东大学能源与动力工程学院, 山东 济南 250061
  • 发布日期:2020-10-19
  • 作者简介:曹洪振(1980— ),男,山东济宁人,高级工程师,主要研究方向为火力发电厂热机设备. E-mail:caohongzhen@sdepci.com. *通信作者简介:王湛(1981— ),男,山东济南人,讲师,博士,主要研究方向为电力设备. E-mail:wangzhan@sdu.edu.cn

Numerical simulation of the tangent circular-to-rectangular transition duct

CAO Hongzhen1, QI Jinsheng1, YUAN Baoqiang2, DU Wenjing2, WANG Zhan2*   

  1. 1. Shandong Electric Power Engineering Consulting Institute Corporation, Jinan 250013, Shandong, China;
    2. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2020-10-19

摘要: 采用ANSYS Fluent对底部相切的偏心方圆节扩散管进行数值模拟。试验数据验证数值模型的准确性。比较同心方圆节与偏心方圆节流场的差异,探究扩散管长度对流场的影响,通过添加导向板对高扩散角的偏心方圆节进行优化。模拟结果表明,偏心方圆节扩散管长度与烟道总压降和流场均匀性呈非线性关系,增大扩散管长可降低局部损失。高扩散角的偏心方圆节添加导向板可降低管道局部损失,提高流场均匀性。

关键词: 偏心方圆节, 扩散管, 流场均匀性, 阻力, 数值模拟

Abstract: ANSYS Fluent was used to simulate the circular-to-rectangular transition duct. The accuracy of the numerical model was verified by experimental data. The difference between the concentric and tangent CRD(circular to rectangular duct)was compared,then the influence of the diffusion tube length on the flow field was explored, and the tangent CRD with high diffusion angle was optimized by adding deflectors. The simulation results showed that the length(diffusion angle)had a nonlinear relationship with the total pressure drop of the flue and the uniformity of the flow field. For tangent CRD with high diffusion angle, adding deflectors was more effectual to reduce local loss of the pipeline and improve the uniformity of the flow field.

Key words: tangent circular-to-rectangular transition duct, diffusion tube, flow field uniformity, resistance, numerical simulation

中图分类号: 

  • TB126
[1] 周俊. 圆形烟风道与节能降耗[J]. 江苏锅炉, 2010(4): 40-42. ZHOU Jun. Circular flue gas duct and energy saving[J]. Jiangsu Boiler, 2010(4): 40-42.
[2] 周锐. 大容量机组圆形烟道设计特点介绍[J]. 科技信息, 2009(35): 384-385. ZHOU Rui. Design features of circular flue of large capacity unit[J]. Science and Technology Information, 2009(35): 384-385.
[3] 祁金胜, 安春国, 王湛. 矩形和圆形烟风道加固肋设计的比较[J]. 锅炉技术, 2017, 48(2): 26-29. QI Jinsheng, AN Chunguo, WANG Zhan. Comparison of stiffener design of rectangular and round flue gas and air ducts[J]. Boiler Technology, 2017, 48(2): 26-29.
[4] 祁金胜, 安春国, 柏洁, 等. 圆形烟风道支座与加固肋匹配特性[J]. 山东大学学报(工学版), 2017, 47(1): 125-130. QI Jinsheng, AN Chunguo, BAI Jie, et al. Study on matching property of supports and stiffeneron circular exhaust duct[J]. Journal of Shandong University(Engineering Science), 2017, 47(1): 125-130.
[5] 龙隽雅. 电站锅炉低温省煤器设计及前后烟道流场均匀性模拟[D]. 上海: 东华大学, 2014. LONG Junya. Design of boiler economizer and simulation of folw field about uniformity[D]. Shanghai: Donghua University, 2014.
[6] 湛含辉. 二次流原理[M]. 长沙: 中南大学出版社, 2006.
[7] 岑可法. 锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M]. 北京: 科学出版社, 1994.
[8] 刘忠秋. 不同管型低温省煤器顺排管束性能对比研究[J]. 电力系统装备, 2019, 1(1): 236-237. LIU Zhongqiu. Comparative study on performance of smooth tube bundles of different tubular low temperature economizers[J]. Electric Power System Equipment, 2019, 1(1): 236-237.
[9] REICHERT B A, HINGST W R, OKIISHI T H. Circular-to-rectangular transition duct flow without and with inlet swirl[J]. Journal of Propulsion and Power, 1994, 10(1): 88-94.
[10] MIAU J, CHOU J H, LIN C K, et al. Flow distortion in a circular-to-rectangular transition duct[J]. Aiaa Journal, 1990, 28(8): 1447-1456.
[11] PAO S P, CARLSON J R, ABDOL-HAMID K S. Computational investigation of circular-to-rectangular transition ducts[J]. Journal of Propulsion & Power, 1991, 10(1): 95-100.
[12] 钱成绪, 王文元, 蔡希浩. 火力发电厂烟风煤粉管道设计技术规程:DL/T 5121—2000[S]. 北京: 中国电力出版社, 2010.
[13] 陈锦昌, 邓华东, 朱东辉.一般方圆节的放样探讨和参数化设计[J]. 图学学报, 2007, 28(5): 93-98. CHEN Jinchang, DENG Huadong, ZHU Donghui. Development of a normal rectangle-circle connector and it's parameterized design[J]. Journal of Engineering Graphics, 2007, 28(5): 93-98.
[14] SHIH T H, LIOU WW, SHABIR A, et al. A new eddy viscosity model for high Reynolds number turbulent flows model development and validation[J]. Computers Fluids, 1995, 24(3): 227-238.
[15] 于飞, 刘明, 李卫东, 等. 90°矩形截面弯头内置导流板的布置优化研究[J]. 动力工程学报, 2015, 35(2): 147-152. YU Fei, LIU Ming, LI Weidong, et al. Layout optimization of guide plates in a 90SymbolpB@ degree elbow with rectangular cross section[J]. Journal of Chinese Society of Power Engineering, 2015, 35(2): 147-152.
[16] 邹高万. 粘性流体力学[M]. 北京: 国防工业出版社, 2013.
[17] 杨世铭, 陶文铨. 传热学[M].4版. 北京: 高等教育出版社, 2006.
[18] DAVIS D O, GESSNER F B. Experimental investigation of turbulent flow through a circular-to-rectangular transition duct[J]. AIAA Journal, 1992, 30(2): 367-375.
[19] 李坦, 靳世平, 黄素逸. 流场速度分布均匀性评价指标比较与应用研究[J]. 热力发电, 2013, 42(11): 60-63. LI Tan, JIN Shiping, HUANG Suyi. Evaluation indices of flow velocity distribution uniformity:comparison and application[J]. Thermal Power Generation, 2013, 42(11): 60-63.
[20] TAO Hongge, CHEN Huanxin, XIE Junlong, et al. An alternative approach to quantifying fluid flow uniformity based on area-weighted average velocity and mass-weighted average velocity[J]. Energy and Buildings, 2012, 45: 116-123.
[1] 祁金胜,曹洪振,石岩, 杜文静, 王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69.
[2] 陈禹成,王朝阳,郭明,林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报 (工学版), 2020, 50(5): 33-43.
[3] 王春国. 偏压大跨小净距公路隧道施工力学行为[J]. 山东大学学报 (工学版), 2020, 50(4): 85-89.
[4] 胡伟. 基于孔隙尺度下丝网多孔介质通道流阻特性[J]. 山东大学学报 (工学版), 2019, 49(6): 119-126.
[5] 周慧琳,邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报 (工学版), 2019, 49(4): 99-107.
[6] 刘明才. 大断面小净距公路隧道施工影响分析[J]. 山东大学学报 (工学版), 2019, 49(4): 78-85.
[7] 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106.
[8] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[9] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[10] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[11] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
[12] 郑林彬,王建明,何讯超. 2024铝合金喷丸粗糙度试验与数值模拟[J]. 山东大学学报(工学版), 2017, 47(1): 84-89.
[13] 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58.
[14] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[15] 李连祥,李先军. 不同扩径体数量、位置对支盘桩承载力的影响[J]. 山东大学学报(工学版), 2016, 46(5): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!