您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (3): 52-60.doi: 10.6040/j.issn.1672-3961.0.2020.468

• • 上一篇    下一篇

硬岩隧道施工通风系统优化与抑尘效果评价

王春国   

  1. 中铁十四局集团隧道工程有限公司, 山东 济南 250003
  • 出版日期:2021-06-20 发布日期:2021-06-24
  • 作者简介:王春国(1971— ),男,山东青岛人,高级工程师,主要研究方向为隧道工程. E-mail:wztgzy@yeah.net
  • 基金资助:
    山东省重点研发计划资助项目(2018GHY115015)

Optimization of ventilation system of TBM tunnel construction and evaluation of dust suppression effect

WANG Chunguo   

  1. Tunnel Engineering Co., Ltd., China Railway 14 Bureau Group, Jinan 250003, Shandong, China
  • Online:2021-06-20 Published:2021-06-24

摘要: 硬岩隧道掘进机(tunnel boring machine, TBM)在施工过程中会产生大量粉尘,粉尘是影响操作环境与工人身体健康的重要因素。为了进一步优化施工通风除尘效果,结合青岛地铁1号线双护盾TBM实际工况,使用Ansys-Fluent软件对隧道开挖过程进行数值分析。检测隧道各位置风速及粉尘质量浓度并与数值模拟结果进行对比,进而验证模型的有效性。针对TBM隧道施工过程中是否必要开启除尘系统,以及除尘风口位置和最优吸风流量选择等问题,开展数值模拟计算。研究结果表明:当关闭除尘系统或开启除尘系统但吸风流量在4 m3/s以下时,粉尘扩散到TBM掘进区大部分区域;在除尘风管距离掌子面15 m,吸风流量为12 m3/s时,除尘效果达到最佳,粉尘扩散全面距离降低至45 m,可以有效除尘。本研究结果可以为隧道通风除尘设计与施工提供科学依据。

关键词: 隧道掘进机, 通风系统, 抑尘效果, 数值模拟, 粉尘扩散

Abstract: Hard rock tunneling boring machine(TBM)produces a large amount of dust during construction, which is an important factor affecting the operating environment and the health of workers. To further optimize the construction ventilation and dust removal effect, combined with the actual working conditions of Qingdao Metro Line 1 double shield TBM, Ansys-Fluent software was used to carry out numerical analysis of the tunnel excavation process. The wind speed and dust mass concentration at each location of the tunnel were detected and compared with the numerical simulation results to verify the effectiveness of the model. In view of whether it is necessary to open the dust removal system in the process of TBM tunnel construction, as well as the location of dust removal tuyere and the selection of optimal suction flow, numerical simulation was carried out. When the dust removal system was turned off or the dust removal system was turned on but the suction flow was below 4 m3/s, and the dust diffuses to most areas of the TBM tunneling area. When the dust duct was 15 m away from the hand surface and the suction airflow was 12 m3/s, the dust removal effect reached the best, and the dust diffusion distance was reduced to 45 m, which could effectively remove dust. The research results could provide a scientific basis for the design and construction of tunnel ventilation and dust removal.

Key words: tunnel boring machine, ventilation system, dust suppression effect, numerical simulation, dust diffusion

中图分类号: 

  • U455
[1] ZHOU Wendong, WANG Hetang, WANG Deming, et al. The effect of geometries and cutting parameters of conical pick on the characteristics of dust generation: experimental investigation and theoretical exploration[J]. Fuel Processing Technology, 2020, 198: 106243.
[2] QIANG Liu, WEN Nie, YUN Hua, et al. Long-duct forced and short-duct exhaust ventilation system in tunnels: formation and dust control analysis of pressure ventilation air curtain[J]. Process Safety and Environmental Protection, 2019, 132:367-377.
[3] 徐海.敞开式TBM施工隧道粉尘扩散及除尘系统研究[J].中国安全生产科学技术,2019,15(6):179-185. XU Hai. Study on dust diffusion and dust removal system of open-type TBM construction tunnel[J]. Journal of Safety Science and Technology, 2019, 15(6):179-185.
[4] LU Hao, LU Lin, JIANG Yu. Numerical simulation of particle deposition in duct air flows with uniform, expanding or contracting cross-section[J]. Energy and Buildings, 2016, 128:867-875.
[5] YIN Shuai, NIE Wen, LIU Qiang, et al. Transient CFD modelling of space-time evolution of dust pollutants and air-curtain generator position during tunneling[J]. Journal of Cleaner Production, 2019, 239:117924.1-117924.19.
[6] LI Pengcheng, ZHI Zhou, CHEN Lianjun, et al. Research on dust suppression technology of shotcrete based on new spray equipment and process optimization[J]. Advances in Civil Engineering, 2019, 3:1-11.
[7] 郭春,宋骏修,王欣,等.矿山法施工隧道粉尘控制技术研究现状及进展[J].隧道建设,2020,40(增刊1):68-74. GUO Chun, SONG Junxiu, WANG Xin, et al. Research status and development of dust control technology in tunnel constructed by mining method[J]. Tunnel Construction, 2020, 40(Suppl.1):68-74.
[8] SUN Zhanpeng, LIANG Longlong, LIU Qinggang, et al. Effect of the particle injection position on the performance of a cyclonic gas solids classifier[J]. Advanced Powder Technology, 2019, 31(1):227-233.
[9] WANG Qingguo, WANG Deming, HAN Fangwei, et al. Study and application on foam-water mist integrated dust control technology in fully mechanized excavation face[J]. Process Safety and Environmental Protection, 2020, 133:41-50.
[10] 黄显周,陈实,魏治国,等.澜沧江特长隧道混合式施工通风技术研究[J].地下空间与工程学报,2020,16(增刊1):353-359. HUANG Xianzhou, CHEN Shi, WEI Zhiguo, et al. Mixed construction ventilation of lancang river super long tunnel[J].Chinese Journal of Underground Space and Engineering, 2020, 16(Suppl.1):353-359.
[11] WANG Yingchao, LUO Gang, GENG Fan, et al. Numerical study on dust movement and dust distribution for hybrid ventilation system in a laneway of coal mine[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:146-157.
[12] WANG Hao, NIE Wen, CHENG Weimin, et al. Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel's fully-mechanized working face[J]. Advanced Powder Technology, 2018, 29(2):230-244.
[13] 胡宜.通风系统布置对TBM掘进区域温度与粉尘分布影响规律研究[D].长沙:中南大学,2014. HU Yi. Research ininfluence rules of ventilation system distribution to TBM tunneling areas dust and temperature distribution [D].Changsha: Central South University, 2014.
[14] PARRA M T, VILLAFRUELA J M, CASTRO F, et al. Numerical and experimental analysis of different ventilation systems in deep mines[J]. Building and Environment, 2006, 41:87-93.
[15] 赵宁雨,吕陈伏,陈弘杨,等.高海拔长大隧道压入式施工通风的合理长度研究[J].重庆交通大学学报(自然科学版),2020,39(3):94-99. ZHAONingyu, LYU Chenfu, CHEN Hongyang, et al. Optimal length of forced ventilation in construction of long tunnel at high altitude[J].Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(3):94-99.
[16] 宋骏修,宋斌,董长松,等.风管布设参数对隧道施工排尘效果的影响研究[J].现代隧道技术,2019, 56(增刊2): 143-149. SONGJunxiu, SONG Bin, DONG Changsong, et al. The influence of duct layout parameters n the dust removal effect if tunnel ventilation system[J]. Modern Tunnelling Technology, 2019, 56(Suppl.2):143-149.
[17] 梁敏阳.哈尔乌素露天煤矿冬季粉尘运移规律及数值模拟[D].徐州:中国矿业大学,2019. LIANGMinyang. Dust migration law and numerical simulation in winter in haerwusu open-pit coal mine[D]. Xuzhou: China University of Mining and Technology, 2019.
[18] SUN Biao, CHENG Weimin, WANG Jiayuan, et al. Effects of turbulent airflow from coal cutting on pollution characteristics of coal dust in fully-mechanized mining face: a case study[J].Journal of Cleaner Production, 2018, 201:308-324.
[19] 彭亚.综采工作面煤层注水防尘优化及效果研究[J].煤炭科学技术,2018,46(1):224-30. PENG Ya. Study on seam water injection and dust control optimization and effect of fully-mechanized coal mining face[J]. Coal Science and Technology, 2018, 46(1):224-30.
[20] 陈举师,蒋仲安,谭聪.岩巷综掘工作面通风除尘系统的数值模拟[J].哈尔滨工业大学学报,2015,47(2):98-103. CHEN Jushi, JIANG Zhongan, TAN Cong. Numerical simulation of dust removal and ventilation system in the rock comprehensive tunneling face[J]. Journal of Harbin Institute of Technology, 2015, 47(2):98-103.
[21] 时训先,蒋仲安,褚燕燕.煤矿综采工作面防尘技术研究现状及趋势[J].中国安全生产科学技术,2005,1(1):41-43. SHI Xunxian, JIANG Zhongan, CHU Yanyan. Current development and trend of dust control technology research of fully mechanized coal faces[J]. Journal of Safety Science and Technology, 2005, 1(1):41-43.
[22] XIA Yimin, YANG Duan, HU Chenghuan, et al. Numerical simulation of ventilation and dust suppression system for open-type TBM tunneling work area[J]. Tunnelling and Underground Space Technology, 2016, 56:70-78.
[23] LIU Qiang, NIE Wen, HUA Yun, et al. A study on the dust control effect of the dust extraction system in TBM construction tunnels based on CFD computer simulation technology[J]. Advanced Powder Technology, 2019, 30:2059-2075.
[24] XU Guang, LUXBACHER Kray D, RAGAB Saad, et al. Computational fluid dynamics applied to mining engineering: a review[J]. International Journal of Mining, Reclamation and Environment, 2016, 31(4):251-275.
[25] MORSI Sa, ALEXANDER Aj. Investigation of particle trajectories in 2-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2):193-208.
[26] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289.
[27] HU Shengyong, LIAO Qi, FENG Guorui, et al. Influences of ventilation velocity on dust dispersion in coal roadways[J]. Powder Technology, 2020, 360:683-694.
[28] CHENG Weimin, NIE Wen, ZHOU Gang, et al. Research and practice on fluctuation water injection technology at low permeability coal seam[J]. Safety Science, 2012, 50(4):851-856.
[1] 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51.
[2] 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38.
[3] 徐再根,刘正伟,刘文棚,周梦瑶,刘俊才,田利. 输电塔单双角钢过渡节点计算方法[J]. 山东大学学报 (工学版), 2021, 51(1): 87-93.
[4] 苏思博,王国清,贾献卓,李志聪,黄志刚. 剪跨比对插槽式连接空心管墩抗震性能影响[J]. 山东大学学报 (工学版), 2021, 51(1): 39-45.
[5] 闫吉庆,王效嘉,田茂诚. 含不凝气蒸汽在锯齿形表面的凝结传热特性[J]. 山东大学学报 (工学版), 2020, 50(6): 129-134.
[6] 曹洪振,祁金胜,袁宝强,杜文静,王湛. 偏心方圆节扩散管数值模拟[J]. 山东大学学报 (工学版), 2020, 50(5): 77-82.
[7] 祁金胜,曹洪振,石岩,杜文静,王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69, 76.
[8] 陈禹成,王朝阳,郭明,林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报 (工学版), 2020, 50(5): 33-43.
[9] 王春国. 偏压大跨小净距公路隧道施工力学行为[J]. 山东大学学报 (工学版), 2020, 50(4): 85-89.
[10] 胡伟. 基于孔隙尺度下丝网多孔介质通道流阻特性[J]. 山东大学学报 (工学版), 2019, 49(6): 119-126.
[11] 周慧琳,邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报 (工学版), 2019, 49(4): 99-107.
[12] 刘明才. 大断面小净距公路隧道施工影响分析[J]. 山东大学学报 (工学版), 2019, 49(4): 78-85.
[13] 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106.
[14] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[15] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[3] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[6] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[7] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[8] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[9] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[10] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .