您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (6): 119-126.doi: 10.6040/j.issn.1672-3961.0.2019.503

• 机械与能动工程 • 上一篇    

基于孔隙尺度下丝网多孔介质通道流阻特性

胡伟()   

  1. 济南市生态环境局历城分局, 山东 济南 250100
  • 收稿日期:2019-09-03 出版日期:2019-12-20 发布日期:2019-12-17
  • 作者简介:胡伟(1969—),男,山东济南人,高级工程师,主要研究方向为环境保护工程及技术. E-mail:lcjsxmk@163.com

Flow resistance characteristics of wire mesh porous media channel based on pore-scale

Wei HU()   

  1. Licheng Branch, Jinan Municipal Bureau of Ecological Environment, Jinan 250100, Shandong, China
  • Received:2019-09-03 Online:2019-12-20 Published:2019-12-17

摘要:

基于丝网多孔介质孔隙通道数值分析,研究不同几何参数的丝网多孔介质通道内的流阻特性ΔP、黏性阻力Au与惯性阻力Bu2等变化特性。通过CFD软件建立三维稳态修正k-ω湍流模型保证计算精度,并选择5种不同丝径和孔径的4单元孔隙模型,开展低入口流速范围内的流阻特性研究。根据数值分析结果,得到不同构型下孔隙级通道的流阻特性,显示出构型对丝网通道内非线性流动阻力特性产生的显著影响。结果表明,丝网构型角度越小(θ=45°~90°),通道内流动阻力越大,而分压占比规律一致;流速越大(v=0.2~1.0 m/s),则非线性作用越大,惯性阻力占比越多。

关键词: 数值模拟, 几何构型, 丝网多孔介质, Forchheimer模型, 压降

Abstract:

Through the pore-scale of the mesh porous media channel numerical analysis, the flow resistance characteristics of wire mesh channel with different geometric parameters were studied, including pressure drop ΔP, viscous resistance Au and inertial resistance Bu2. A three-dimensional steady-state modified k-ωturbulence model was developed by CFD software, and five four-cell pore models with different wire diameters and pore diameters were selected. Numerical analysis on flow resistance characteristics in wire mesh velocity numbers, i.e., from 0.2 m/s to 1.0 m/s were performed. The characteristics of flow in pore-level channels with different configurations under the range of low velocity numbers were obtained. It was shown that the configuration had a significant influence on the nonlinear flow characteristics of the wire mesh channel. The results showed that the smaller the mesh configuration angle (θ=45°~90°), the greater flow resistance in the channel, however, the partial pressure ratio was the same. It also indicated that faster the flow velocity (v=0.2~1.0 m/s), the greater the nonlinear effect and more inertial resistance would be.

Key words: numerical simulation, geometric structure, wire mesh porous media, Forchheimer model, pressure drop

中图分类号: 

  • TB71+2

图1

金属丝网"

图2

单元金属丝网"

表1

丝网多孔介质的结构参数"

丝网构型 纬丝d2/mm 径丝d1/mm 孔径M1/mm 孔径M2/mm 夹角θ1/(°) 夹角θ2/(°)
W45 0.1 0.1 0.3 0.3 45 45
W60 0.1 0.1 0.3 0.3 60 60
W75 0.1 0.1 0.3 0.3 75 75
W90 0.1 0.1 0.3 0.3 90 90

图3

丝网多孔介质孔隙级通道模型"

图4

W90网格无关性验证"

图5

W90模拟数据与经验公式对比"

图6

W75模拟数据与经验公式对比"

图7

W60模拟数据与经验公式对比"

图8

W45模拟数据与经验对比"

图9

W90流速与压降的关系"

图10

W75流速与压降的关系"

图11

W60流速与压降的关系"

图12

W45流速与压降的关系"

表2

不同结构形式丝网的拟合参数"

丝网 A B K F R2
W90 106.31 439.17 9.93e-10 0.138 99.94
W75 112.81 472.29 9.20e-10 0.143 99.96
W60 140.75 559.53 6.80e-10 0.146 99.67
W45 212.37 832.06 4.70e-10 0.180 99.96

图13

Forchheimer系数A、B与丝网角度关系"

图14

流速与压降的关系"

图15

流速与各阻力占比关系"

图16

丝网角度与压降关系"

图17

丝网结构角度与惯性占比的关系"

1 LIU J F , WU W T , CHIU W C , et al. Measurement and correlation of friction characteristic of flow through foam matrixes[J]. Experimental Thermal and Fluid Science, 2006, 30 (4): 329- 336.
doi: 10.1016/j.expthermflusci.2005.07.007
2 CHILDS E C . Dynamics of fluids in porous media[J]. Engineering Geology, 1972, 7 (2): 174- 175.
3 FLEMISCH B , BERRE I , BOON W , et al. Benchmarks for single-phase flow in fractured porous media[J]. Advances in Water Resources, 2017, 111 (3): 1- 33.
4 SHEIKHOLESLAMI M . Numerical simulation of magnetic nanofluid natural convection in porous media[J]. Physics Letters A, 2017, 381 (5): 494- 503.
doi: 10.1016/j.physleta.2016.11.042
5 CHIAPPINI D , FESTUCCIA A , BELLA G . Coupled lattice Boltzmann finite volume method for conjugate heat transfer in porous media[J]. Numerical Heat Transfer(Part A: Applications), 2018, 73 (5): 291- 306.
doi: 10.1080/10407782.2018.1444868
6 HUSSAIN S . Finite element solution for MHD flow of nanofluids with heat and mass transfer through a porous media with thermal radiation, viscous dissipation and chemical reaction effects[J]. Advances in Applied Mathematics and Mechanics, 2017, 9 (4): 904- 923.
doi: 10.4208/aamm.2014.m793
7 JIANG Y , KHADILKAR M R , AL-DAHHAN M H , et al. CFD of multiphase flow in packed-bed reactors:I. k-fluid modeling issues[J].AIChE Journal,
8 GUNJAL P R , KASHID M N , RANADE V V , et al. Hydrodynamics of trickle-bed reactors: experiments and CFD modeling[J]. Industrial and Engineering Chemistry Research, 2005, 44 (16): 6278- 6294.
doi: 10.1021/ie0491037
9 TROUDI H , GHISS M , ELLEJMI M , et al. CFD simulation of multicomponent mixture within a packed Deethanizer column[J]. Heat and Mass Transfer, 2019, 1- 18.
10 ATMAKIDIS T , KENIG E Y . CFD-based analysis of the wall effect on the pressure drop in packed beds with moderate tube/particle diameter ratios in the laminar flow regime[J]. Chemical Engineering Journal, 2009, 155 (1): 404- 410.
11 KLKER M , KENIG E Y , PIECHOTA R , et al. CFD-based study on hydrodynamics and mass transfer in fixed catalyst beds[J]. Chemical Engineering and Technology, 2010, 28 (1): 31- 36.
12 RAHIMI R , ABBASPOUR D . Determination of pressure drop in wire mesh mist eliminator by CFD[J]. Chemical Engineering and Processing: Process Intensification, 2008, 47 (9): 1504- 1508.
13 RAN X J , ZHU Q Y , LI Y . Investigation on heat and mass transfer in 3D woven fibrous material[J]. International Journal of Heat and Mass Transfer, 2011, 54 (15): 3575- 3586.
14 BRADSHAW P . The effect of wind-tunnel screens on nominally two-dimensional boundary layers[J]. Journal of Fluid Mechanics, 1965, 22 (4): 679- 687.
15 WU W T , LIU J F , LI W J , et al. Measurement and correlation of hydraulic resistance of flow through woven metal screens[J]. International Journal of Heat and Mass Transfer, 2005, 48 (14): 3008- 3017.
doi: 10.1016/j.ijheatmasstransfer.2005.01.038
16 SELTSAM M M . Experimental and theoretical study of a wide-angle diffuser flow with screens[J]. AIAA Journal, 1994, 33 (11): 2092- 2100.
17 GRITSKEVICH M S , GARBARUK A V , SCHVTZE J , et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbulence and Combustion, 2012, 88 (3): 431- 449.
18 侯宗宗, 王宾宾, 王要伟, 等. 金属丝网的流场数值模拟分析[J]. 过滤与分离, 2017, 27 (2): 20- 24.
doi: 10.3969/j.issn.1005-8265.2017.02.005
HOU Zongzong , WANG Binbin , WANG Yaowei , et al. Numerical simulation analysis of flow field of metal wire mesh[J]. Journal of Filtration and Separation, 2017, 27 (2): 20- 24.
doi: 10.3969/j.issn.1005-8265.2017.02.005
19 ARMOUR J C , CANNON J N . Fluid flow through woven screens[J]. American Institute of Chemical Engineers Journal, 1968, 14 (3): 415- 420.
doi: 10.1002/aic.690140315
20 SCHUBAUER G B , SPANGENBERG W G . The effect of screens in wind-tunnel wide-angle diffusers[J]. Journal of the Franklin Institute, 1948, 246 (4): 341- 343.
doi: 10.1016/0016-0032(48)90874-6
21 KOŁODZIEJ A , JAROSZYN'SKI M , JANUS B , et al. An experimental study of the pressure drop in fluid flows through wire gauzes[J]. Chemical Engineering Communications, 2009, 196 (8): 932- 949.
doi: 10.1080/00986440902743851
22 COMITI J , SABIRI N E , MONTILLET A . Experimental characterization of flow regimes in various porous media: III: limit of Darcy′s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids[J]. Chemical Engineering Science, 2000, 55 (15): 3057- 3061.
doi: 10.1016/S0009-2509(99)00556-4
23 IRMAY S . On the theoretical derivation of Darcy and Forcheimer formulas[J]. Transactions American Geophysical Union, 1958, 39 (4): 702.
doi: 10.1029/TR039i004p00702
[1] 刘明才. 大断面小净距公路隧道施工影响分析[J]. 山东大学学报 (工学版), 2019, 49(4): 78-85.
[2] 周慧琳,邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报 (工学版), 2019, 49(4): 99-107.
[3] 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106.
[4] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[5] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[6] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[7] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
[8] 郑林彬,王建明,何讯超. 2024铝合金喷丸粗糙度试验与数值模拟[J]. 山东大学学报(工学版), 2017, 47(1): 84-89.
[9] 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58.
[10] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[11] 米春荣,李建明. 预应力混凝土管桩后注浆器的研制与应用[J]. 山东大学学报(工学版), 2016, 46(4): 89-95.
[12] 周乾,闫维明,纪金豹. 故宫灵沼轩钢结构动力特性与地震响应[J]. 山东大学学报(工学版), 2016, 46(1): 70-79.
[13] 汤潍泽, 欧金秋, 崔新壮, 楼俊杰, 肖溟, 张炯, 黄丹, 侯飞. 车载引起的沥青路面内动水压力现场试验研究[J]. 山东大学学报(工学版), 2015, 45(6): 84-90.
[14] 曹伟东, 戴涛, 于金彪, 席开华, 鲁统超, 程爱杰. 化学驱数值模拟的IMPIMC方法[J]. 山东大学学报(工学版), 2015, 45(1): 88-94.
[15] 高智珺, 崔新壮, 隋伟, 郭洪, 刘航, 李长义, 冯洪波. 大型失控车辆与隧道衬砌的动态相互作用与损伤分析[J]. 山东大学学报(工学版), 2014, 44(5): 49-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[2] 高明 史月涛 王妮妮 孙奉仲 平亚明. 侧风环境下自然通风湿式冷却塔周向进风变化规律[J]. 山东大学学报(工学版), 2009, 39(3): 154 -158 .
[3] 李梦丽 王威强 徐书根 宋明大 王功 苗光同. 物料化学爆炸引起尿塔塔体爆破可能性分析[J]. 山东大学学报(工学版), 2008, 38(6): 1 -6 .
[4] 阮久宏, 李贻斌, 杨福广, 荣学文. 有人驾驶AWID-AWIS车辆动力学控制研究[J]. 山东大学学报(工学版), 2010, 40(1): 10 -14 .
[5] 陈文钢 ,田岚,姜晓庆,孙英明 . 一种噪声谱快速跟踪的语音增强方法[J]. 山东大学学报(工学版), 2006, 36(4): 26 -28 .
[6] 王娟,陈慧岩,丁华荣 . 液力机械自动变速箱起步过程控制[J]. 山东大学学报(工学版), 2008, 38(2): 23 -27 .
[7] 牛纪强,梁习锋,熊小慧,刘峰. 车辆外风挡结构对高速列车横风气动性能影响[J]. 山东大学学报(工学版), 2016, 46(2): 108 -115 .
[8] 夏少波1,许娥2. 无线传感器网络节点定位算法[J]. 山东大学学报(工学版), 2010, 40(3): 143 -147 .
[9] 廖伙木,董增川,员汝安 . 基于共轭分布的洪水过程动态估值[J]. 山东大学学报(工学版), 2006, 36(2): 67 -70 .
[10] 闵颖颖,刘允刚 . Barbalat引理及其在系统稳定性分析中的应用[J]. 山东大学学报(工学版), 2007, 37(1): 51 -55 .