您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 69-77.doi: 10.6040/j.issn.1672-3961.0.2017.580

• 机器学习与数据挖掘 • 上一篇    下一篇

咸水区水泥土桩劣化及改性对道路复合地基的影响

王忠啸1,崔新壮1,2*,崔社强1,张磊1,车华桥1,苏俊伟1   

  1. 1. 山东大学土建与水利学院, 山东 济南 250061;2. 山东大学深圳研究院, 广东 深圳 518057
  • 收稿日期:2017-11-22 出版日期:2018-08-20 发布日期:2017-11-22
  • 通讯作者: 崔新壮(1974— ),男,山东寿光人,教授,博士,主要研究方向为岩土力学. E-mail: cuixz@sdu.edu.cn E-mail:1392866188@qq.com
  • 作者简介:王忠啸(1990— ),男,山东成武人,硕士研究生,主要研究方向为道路工程. E-mail: 1392866188@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51778346、51479105);深圳市科技研发基金资助项目(JCYJ20160429183630760)

The influence of soil-cement pile deterioration and modification in salt-water area on road composite foundation

WANG Zhongxiao1, CUI Xinzhuang1,2*, CUI Sheqiang1, ZHANG Lei1, CHE Huaqiao1, SU Junwei1   

  1. 1. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Shenzhen Research Institute, Shandong University, Shenzhen 518057, Guangdong, China
  • Received:2017-11-22 Online:2018-08-20 Published:2017-11-22

摘要: 为了揭示咸水区水泥土桩劣化及改性对道路复合地基的影响,通过室内试验分析黄河三角洲土水的理化性质,研究含盐水泥土的力学特性。基于莫尔-库伦本构模型和强度折减法,利用FLAC3D模拟水泥土桩劣化及改性对复合地基沉降和承载特性的影响。研究发现:地下水基本上为矿化度大于5 g/L的盐水,盐分以氯化物为主;盐的腐蚀作用会使水泥土发生劣化而强度降低;水泥土桩劣化会增大复合地基沉降,降低桩体承载能力;用矿渣微粉对水泥土桩改性可有效提高桩体承载能力、减小复合地基沉降。为此,在咸水区复合地基设计中,充分考虑水泥土桩的劣化效应是确保路基在全寿命周期内具有足够强度和稳定性的关键。

关键词: 道路工程, 咸水区, 水泥土桩劣化, 数值模拟, 材料改性, 复合地基

Abstract: In order to reveal the influence of soil-cement pile deterioration and modification in salt-water area on road composite foundation, the physical and chemical properties of soil and water in the Yellow River Delta were analyzed through laboratory experiments, and the mechanical properties of salty soil-cement were studied. Based on Mohr-Coulomb constitutive model and strength reduction method, the influence of soil-cement pile deterioration and modification on the settlement and load-bearing properties of composite foundation were stimulated by FLAC3D. Research showed that, groundwater was basically saltwater with a salinity greater than 5 g/L and the salt was mainly chloride. The corrosion of salt caused deterioration of soil-cement with reduced strength. The deterioration of soil-cement pile increased the settlement of composite foundation and reduced the bearing capacity of pile. It could be effectively improved the bearing capacity of pile and reduced the settlement of composite foundation by using slag powder to modify soil-cement pile. Therefore, in the design of composite foundation, fully considering the deterioration effect of soil-cement pile is the key to ensure that the subgrade has sufficient strength and stability throughout its life cycle.

Key words: salt-water area, material modification, composite foundation, numeric simulation, soil-cement pile deterioration, road engineering

中图分类号: 

  • TU472.3
[1] TERASHI M. Fundamental properties of lime and cement treated soil(3rd report)[J]. Report of Port and Harbour Research Institute, 1983, 22(1): 69-96.
[2] 邢皓枫,徐超,叶观宝,等. 可溶盐离子对高含盐水泥土强度影响的机理分析[J]. 中国公路学报,2008,21(6):26-30,42. XING Haofeng, XU Chao, YE Guanbao, et al. Mechanism analysis of influence of soluble salt ions on strength of salt-rich cement-soil[J]. China Journal of Highway and Transport, 2008, 21(6):26-30,42.
[3] 陈四利,宁宝宽,刘一芳,等. 化学侵蚀下水泥土的无侧限抗压强度试验[J]. 新型建筑材料,2006(6):40-42. CHEN Sili, NING Baokuan, LIU Yifang, et al. Compressive strength test of soil cement without lateral confinement under chemical corrosion[J]. New Building Materials, 2006(6):40-42.
[4] 马冬梅. 可溶盐对水泥土强度影响的微观分析[J]. 公路交通科技, 2008, 25(4):16-21. MA Dongmei. Microstructural analysis of influence of soluble ions on strength of cemented soil[J]. Journal of Highway and Transportation Research and Development, 2008, 25(4):16-21.
[5] 宁宝宽,陈四利,刘斌. 水泥土的环境侵蚀效应与破裂过程分析[J]. 岩土力学与工程学报,2005(10):1778-1782. NING Baokuan, CHEN Sili, LIU Bin. Fracturing behaviors of cemented soil under environmental erosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(10):1778-1782.
[6] 杨俊杰, 孙涛, 张玥宸, 等. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报,2012,34(1):130-138. YANG Junjie, SUN Tao, ZHANG Yuechen, et al. Deterioration of soil cement stabilized in corrosive site[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1):130-138.
[7] 邢爱国,李世争,陈龙珠. 高速公路水泥固化盐渍土的试验研究[J]. 公路,2007(7):76-80. XING Aiguo, LI Shizheng, CHEN Longzhu. Test and study on cement-stabilized saline soil in expressway[J]. Highway, 2007(7):76-80.
[8] 崔新壮,张娜,王聪,等. 黄河三角洲改性含盐水泥土搅拌桩耐久性研究[J]. 建筑材料学报,2013,16(3):481-486. CUI Xinzhuang, ZHANG Na, WANG Cong, et al. Durability of salty soil-cement mixed pile in the yellow river delta[J]. Journal of Building Materials, 2013, 16(3):481-486.
[9] 王聪,崔新壮,周亚旭,等. 黄河三角洲地下咸水对水泥土搅拌桩复合地基承载特性的影响研究[J].公路,2012(7): 5-10. WANG Cong, CUI Xinzhuang, ZHOU Yaxu, et al. A study on influence of salt groundwater in yellow river delta on bearing behavior of soil-cement pile composite foundation[J]. Highway, 2012(7): 5-10.
[10] 刘泉声,柳志平,程勇,等. 水泥土在侵蚀环境中的试验研究和等效分析[J]. 岩土力学,2013,34(7):1854-1860. LIU Quansheng, LIU Zhiping, CHENG Yong, et al. Experimental study and equivalent analysis of cemented soil under corrosion environment[J]. Rock and Soil Mechanics, 2013, 34(7):1854-1860.
[11] 韩鹏举,白晓红,赵永强,等. Mg2+和SO2-4相互影响对水泥土强度影响的试验研究[J]. 岩土工程学报,2009, 31(1):72-76. HAN Pengju, BAI Xiaohong, ZHAO Yongqiang, et al. Experimental study on strength of cement soil under Mg2+ and SO2-4 interaction influence[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1):72-76.
[12] 崔新壮,龚晓南,李术才,等. 盐水环境下水泥土桩劣化及其对道路复合地基沉降的影响[J].中国公路学报,2015,28(5):66-76,86. CUI Xinzhuang, GONG Xiaonan, LI Shucai, et al. Deterioration effect of soil-cement pile under saltwater environment and its influence on composite foundation settlement of road[J]. China Journal of Highway and Transport, 2015, 28(5):66-76,86.
[13] 兰凯,黄汉盛,鄢泰宁. 掺入矿渣的水泥土强度模型试验研究及其配方优化[J]. 水文地质工程地质,2007(5):115-119. LAN Kai, HUANG Hansheng, YAN Taining. Model test research on compressive strength of cement-soil with slag and mix proportion optimization[J]. Hydrogeology & Engineering Geology, 2007(5):115-119.
[14] 董晓强,张少华,苏楠楠,等. 污染土对水泥土强度和电阻率影响的试验研究[J]. 土木工程学报,2015,48(4):91-98. DONG Xiaoqiang, ZHANG Shaohua, SU Nannan, et al. Effects of contaminated soil on electrical resistivity[J]. China Civil Engineering Journal, 2015, 48(4):91-98.
[15] 徐超,郭宏峰,杨晓明,等. 普硅水泥和矿渣水泥加固滨海软土效果对比分析[J]. 岩土力学,2009,30(9):2737-2740. XU Chao, GUO Hongfeng, YANG Xiaoming, et al. Comparation analysis of the effects of marine soft soil improved by portland cement and slag cement[J]. Rock and Soil Mechanics, 2009, 30(9):2737-2740.
[16] 梁仕华,周世宗,戴军,等. 矿渣与水泥固化广州南沙软土试验研究[J]. 工业建筑,2015,45(10):116-120. LIANG Shihua, ZHOU Shizong, DAI Jun, et al. Experimental study of nansha soft soil in guangzhou reinforced by slag and cement[J]. Industrial Construction, 2015, 45(10):116-120.
[17] 资建民,聂桂平.增强型湿塑性水泥土加固软土地基研究[J].岩石力学与工程学报,2003,22(5):858-862. ZI Jianmin, NIE Guiping. Study on the strength enhancement of humid-plastic cement soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5):858-862.
[18] 裴向军,黄润秋,靖向党. 活化粉煤灰抑制高矿化度水泥土膨胀的研究[J]. 岩土力学,2005,26(3):370-374. PEI Xiangjun, HUANG Runqiu, JING Xiangdang. Study on inhibiting soil-cement expansion with activated fly-ash in high degree of mineralization zone[J]. Rock and Soil Mechanics, 2005, 26(3):370-374.
[19] 赫文秀,申向东. 玻璃纤维粉煤灰水泥土的力学特性[J]. 公路交通科技,2012,29(3):12-16. HAO Wenxiu, SHEN Xiangdong. Mechanical behavior of glass fiber and fly ash soil-cement[J]. Journal of Highway and Transportation Research and Development, 2012, 29(3):12-16.
[20] 黄汉盛,鄢泰宁,兰凯. 软土深层搅拌桩的水泥土抗腐蚀性室内试验[J]. 地质科技情报,2005,24(S1):85-88. HUANG Hansheng, YAN Taining, LAN Kai. Laboratory experiment of the anticorrosion of cement stabilized soft soil in deep mixing pile[J]. Geological Science and Technology Information, 2005, 24(S1):85-88.
[1] 祁金胜,曹洪振,石岩,杜文静,王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69, 76.
[2] 陈禹成,王朝阳,郭明,林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报 (工学版), 2020, 50(5): 33-43.
[3] 曹洪振,祁金胜,袁宝强,杜文静,王湛. 偏心方圆节扩散管数值模拟[J]. 山东大学学报 (工学版), 2020, 50(5): 77-82.
[4] 王春国. 偏压大跨小净距公路隧道施工力学行为[J]. 山东大学学报 (工学版), 2020, 50(4): 85-89.
[5] 胡伟. 基于孔隙尺度下丝网多孔介质通道流阻特性[J]. 山东大学学报 (工学版), 2019, 49(6): 119-126.
[6] 周慧琳,邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报 (工学版), 2019, 49(4): 99-107.
[7] 刘明才. 大断面小净距公路隧道施工影响分析[J]. 山东大学学报 (工学版), 2019, 49(4): 78-85.
[8] 李连祥,白璐,陈天宇,季相凯. 复合地基与临近基坑支护结构之间距离影响规律[J]. 山东大学学报 (工学版), 2019, 49(3): 63-72, 79.
[9] 李萌,纪少波,王豪,廖宝梁,韩文扬,韦金城,廉静,葛智. 路面层间应变信号的预处理方法[J]. 山东大学学报 (工学版), 2019, 49(3): 73-79.
[10] 蒋树磊,杨世锋,杨令航,师文明,邹福清,单青红. 城市快速路小间距并行高铁深塘跨越技术[J]. 山东大学学报 (工学版), 2019, 49(1): 91-100.
[11] 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106.
[12] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[13] 郭德栋,张圣涛,李晋,张龙,张习斌. 厂拌热再生过程中旧矿料颗粒的迁移行为[J]. 山东大学学报(工学版), 2018, 48(2): 46-52.
[14] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[15] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 欣,李术才,李树忱 . 考虑天然渗流场影响的地应力场反演回归分析及应用[J]. 山东大学学报(工学版), 2008, 38(4): 57 -62 .
[2] 施来顺,董岩岩,李彦彦,李文静 . 二氧化氯催化氧化处理铬黑T模拟废水的实验[J]. 山东大学学报(工学版), 2007, 37(5): 113 -117 .
[3] 牛林 赵建国 李可军. 1000kV特高压交流输电线路工频磁场分析[J]. 山东大学学报(工学版), 2010, 40(1): 154 -158 .
[4] 谢楠 . 不确定非线性离散时滞系统的可靠保成本控制[J]. 山东大学学报(工学版), 2007, 37(4): 28 -33 .
[5] 吴世林 肖书安. 隧道地震成像理论与应用案例[J]. 山东大学学报(工学版), 2009, 39(5): 96 -100 .
[6] 彭丽芳 ,王仲顺,董文冉 . 市场均衡条件下供应链协作方式的对比[J]. 山东大学学报(工学版), 2006, 36(4): 65 -69 .
[7] . 二氧化氯处理南方微污染源水研究[J]. 山东大学学报(工学版), 2006, 36(3): 112 -115 .
[8] 张强勇,向文 . 各向异性损伤锚固模型在大型公路滑坡治理工程中的应用[J]. 山东大学学报(工学版), 2006, 36(5): 82 -85 .
[9] 沈晓晶, 陈明, 池涛. 多Agent水质监控系统中的信息融合算法[J]. 山东大学学报(工学版), 2014, 44(4): 39 -45 .
[10] 李文义,许士国,王兴菊, . 河流水量组成分析与计算方法研究[J]. 山东大学学报(工学版), 2006, 36(2): 71 -74 .