您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (3): 63-72, 79.doi: 10.6040/j.issn.1672-3961.0.2018.345

• 土木工程 • 上一篇    下一篇

复合地基与临近基坑支护结构之间距离影响规律

李连祥ab(),白璐ab,陈天宇ab,季相凯ab   

  1. a. 山东大学土建与水利学院, 山东 济南 200061
    b. 山东大学基坑与深基础工程技术研究中心, 山东 济南 200061
  • 收稿日期:2018-08-11 出版日期:2019-06-20 发布日期:2019-06-27
  • 作者简介:李连祥(1966—),男,河北唐山人,研究员,硕士生导师,博士,主要研究方向为岩土力学及岩土工程. E-mail:jk_doctor@163.com
  • 基金资助:
    济南市科技计划项目(201201145)

Influence rule of foundation pit supporting structure and its adjacent composite foundation distance

Lianxiang LIab(),Lu BAIab,Tianyu CHENab,Xiangkai JIab   

  1. a. School of Civil and Hydraulic Engineering, Shandong University, Jinan 250061, Shandong, China
    b. Foundation Pit and Deep Foundation Engineering Technology Research Center, Shandong University, Jinan 250061, Shandong, China
  • Received:2018-08-11 Online:2019-06-20 Published:2019-06-27
  • Supported by:
    济南市科技计划项目(201201145)

摘要:

基于复合地基与支护结构紧邻情况的离心试验,使用PLAXIS软件,建立复合地基与支护结构之间有一定距离的基坑工程数值模型,研究土条宽度对复合地基与支护结构内力位移的影响规律。结果表明:距离规律可分三个区间:当土条宽度从0增加至6 m, CFG桩轴力与桩土应力比增大,遮拦效应明显,宜建立考虑侧向刚度和遮拦效应的侧压力计算方法主动控制位移;当土条宽度从6 m增加至至18 m, CFG桩轴力、桩土应力比稳定减少,可沿用现有设计算法;土条宽度增加至18 m及以上,新建基坑对既有复合地基不再产生影响。研究结果明确了不同土条宽度下基坑设计方向,以及同类基坑工程中安全防护重点,为进一步建立此类基坑的设计理论奠定了基础。

关键词: 复合地基, 支护结构, 间距

Abstract:

Based on the centrifugal test of the close relationship between the composite foundation and the supporting structure, the PLAXIS software was used to establish a numerical model of the foundation pit with a certain distance between the composite foundation and the supporting structure. This model was used to study the influence of the width of the strip on internal force and displacement of the composite foundation and retaining structure. The results showed that the distance law could be divided into three sections: when the width of the soil strip increased from 0 to 6 m, the axial force of the CFG pile and the pile-soil stress ratio increased, and the obstruction effect was obvious. It was advisable to establish a lateral pressure calculation method that considered the lateral stiffness and the obstruction effect to actively control the displacement. When the width of the soil strip was 6 m to 18 m, the axial force of the CFG pile and the pile-soil stress ratio were steadily reduced. When the width of the soil strip was increased to 18 m or more, there was no longer any influence between the new foundation pit and the existing composite foundation. The research results clarified the design direction of foundation pits under different widths of soil and the safety protection focus of similar foundation pit engineering, which laid a foundation for further establishing the design theory of such foundation pits.

Key words: composite foundation, support structure, strip width

中图分类号: 

  • TU43

图1

临近建筑物基坑"

图2

等比扩大数值模型"

表1

CFG模型桩及原型相关参数"

桩参数置换率尺寸/mm×mm(×mm)桩间距/mm
模型0.031 320×0.5×350100
原型0.031 3400×14 0002 000
数值模型0.031 3800×14 0003 200

图3

离心试验监测桩分布图"

表2

土体HSS模型计算参数"

项目Dr干密度γd
(/kN·m-3)
粘聚力
c/kPa
平均粒径
d50/mm
项目天然孔隙比eeminemax内摩擦角
φ
福建砂85%15.900.17取值0.6630.6 1170.95733

表3

构件计算参数"

部件密度/(kg·m-3)弹性模量/MPa泊松比
支护板2.768.9×1030.33
CFG桩2.768.9×1030.33
褥垫层2.5450.33

图4

支护结构位移"

图5

支护结构弯矩"

图6

开挖深度为10 m时土压力"

图7

轴力监测桩轴力结果"

图8

地表沉降"

图9

各弯矩监测桩弯矩结果"

图10

复合地基与基坑关系示意图"

图11

桩1轴力与土条宽度的关系"

图12

各桩轴力峰值"

图13

土体压应力取值点示意图"

图14

桩土应力比与土条宽度的关系"

图15

桩位移与土条宽度的关系"

图16

桩位移与位置的关系"

表4

数值模型设置对比"

编号组别土条宽度/m上覆荷载/kPaCFG桩
1有桩有载0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24180
2无桩有载0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24180
3无桩无载

图17

三组模型简图对比"

图18

不同土条宽度下的支护结构弯矩"

图19

不同土条宽度下的支护结构位移"

图20

支护结构位移缩减量"

图21

不同土条宽度下支护结构侧压力"

图22

土压力冗余量"

图23

地表沉降"

1 龚晓南. 广义复合地基理论及工程应用[J]. 岩土工程学报, 2007, 29 (1): 1- 12.
doi: 10.3321/j.issn:1000-4548.2007.01.001
GONG Xiaonan . Generalized composite foundation theory and engineering application[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (1): 1- 12.
doi: 10.3321/j.issn:1000-4548.2007.01.001
2 龚晓南. 复合地基的发展概况及其在高层建筑中的应用[J]. 土木工程学报, 1999, 32 (6): 4- 10.
3 GHANBARI A , TAHERI M . An analytical method for calculating active earth pressure in reinforced retaining walls subject to a line surcharge[J]. Geotextiles and Geomembranes, 2012, 34 (10): 1- 10.
4 杜金龙.邻近基坑桩基性状及计算方法研究[D].上海:同济大学, 2008
DU Jinlong.Research of the calculation method and properties of foundation piles adjacent to foundation pit[D].Shanghai: Tongji University, 2008
5 佟建兴, 闫明礼, 王明山, 等. 刚性桩复合地基侧向土压力试验研究[J]. 岩土力学, 2014, 35 (6): 1572- 1578.
TONG Jianxing , YAN Mingli , WANG Mingshan , et al. Experimental study of lateral earth pressure of rigid pile composite foundation[J]. Rock and Soil Mechanics, 2014, 35 (6): 1572- 1578.
6 李连祥, 符庆宏, 张海平. 基坑工程离心模型试验进展及关键技术[J]. 工业建筑, 2015, 45 (10): 142- 149.
LI Lianxiang , FU Qinghng , ZHANG Haiping . Progress and key technology of centrifugal model tests on foundation pitengineering[J]. Industrial Construction, 2015, 45 (10): 142- 149.
7 李连祥, 符庆宏, 张海平, 等. 复合地基侧向力学性状离心模型试验方案研究与设计[J]. 重庆交通大学学报(自然科学版), 2016, 35 (2): 92- 100.
LI Lianxiang , FU Qinghong , ZHANG Haiping , et al. Research and design of centrifuge model tests on lateral mechanics properties of composite foundation[J]. Journal of Chongqing Jiaotong University(Natural Science), 2016, 35 (2): 92- 100.
8 李连祥, 符庆宏, 张永磊, 等. 基坑离心模型试验开挖方法研究与应用[J]. 岩石力学与工程学报, 2016, 35 (4): 856- 864.
LI Lianxiang , FU Qinghong , ZHANG Yonglei , et al. Research and application of a new excavation method in centrifuge model test on foundation pit engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (4): 856- 864.
9 李连祥, 符庆宏, 张海平. 微型土压力传感器标定方法研究[J]. 地震工程学报, 2017, 39 (4): 731- 737.
doi: 10.3969/j.issn.1000-0844.2017.04.0731
LI Lianxiang , FU Qinghong , ZHANG Haiping . Progress and key technology of centrifugal model test on foundation pit engineering[J]. China Earthguake Engineering Journal, 2017, 39 (4): 731- 737.
doi: 10.3969/j.issn.1000-0844.2017.04.0731
10 李连祥, 符庆宏, 黄佳佳. 砂土地基和粉质黏土地基基坑悬臂开挖离心模型试验[J]. 岩土力学, 2018, 38 (2): 529- 536.
LI Lianxiang , FU Qinghong , HUANG Jiajia . Centrifuge model tests on cantilever foundation pit engineering in sand ground and silty clay ground[J]. Rock and Soil Mechanics, 2018, 38 (2): 529- 536.
11 李连祥, 符庆宏. 临近基坑开挖复合地基侧向力学性状离心试验研究[J]. 土木工程学报, 2017, 50 (6): 85- 94.
LI Lianxiang , FU Qinghong . Lateral mechanical behavior of composite ground due to adjacent excavation: Centrifuge model test[J]. China Civil Engineering Journal, 2017, 50 (6): 85- 94.
12 李连祥, 黄佳佳, 符庆宏, 等. 不同置换率复合地基力学性状附加荷载影响规律离心试验研究[J]. 岩土力学, 2017, 38 (增刊1): 131- 139.
LI Lianxiang , HUANG Jiajia , FU Qinghong , et al. Centrifuge experimental study of mechanical properties of composite foundation with different replacement rates under additional load[J]. Rock and Soil Mechanics, 2017, 38 (Suppl. 1): 131- 139.
13 李连祥, 黄佳佳, 成晓阳, 等. 刚性桩复合地基与临近基坑支护结构相互影响的离心模型试验[J]. 岩石力学与工程学报, 2017, 36 (增刊2): 4142- 4150.
LI Lianxiang , HUANG Jiajia , CHEN Xiaoyang , et al. Centrifuge model tests on the interaction between rigid-pile composite foundation in the vicinity of a deep excavation and its retaining structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (Suppl. 2): 4142- 4150.
14 黄佳佳.既有复合地基形成机制与支护开挖力学性状研究[D].济南:山东大学, 2018.
HUANG Jiajia. Study of formation mechanism and mechanical properties of existing composite foundation with adjacent excavation[D]. Jinan: Shandong University, 2018.
15 李连祥, 张永磊, 扈学波. 基于PLAXIS 3D有限元软件的某坑中坑开挖影响分析[J]. 地下空间与工程学报, 2016, 12 (增刊1): 254- 261, 266.
LI Lianxiang , ZHANG Yonglei , HU Xuebo . Finite element analysis of a pit-in-pit excavation based on plaxis 3d[J]. Chinese Journal of Underground Space and Engineering, 2016, 12 (Suppl. 1): 254- 261, 266.
16 刘燕, 聂淑敏, 刘涛. 既有地下结构对基坑位移的遮拦效应研究[J]. 岩土工程学报, 2014, 36 (增刊2): 400- 403.
LIU Yan , NIE Shumin , LIU Tao . Sheltering effect of existing subsurface structures on displacement of retaining wall of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (Suppl. 2): 400- 403.
17 朱炎兵, 周小华, 魏仕锋, 等. 临近既有地铁车站的基坑变形性状研究[J]. 岩土力学, 2013, 34 (10): 2997- 3002.
ZHU Yanbin , Zhou Xiaohua , Wei Shifeng , et al. Investigation on deformation behaviors of foundation pit adjacent to existing metro stations[J]. Rock and Soil Mechanics, 2013, 34 (10): 2997- 3002.
18 吉庆祥.既有建筑复合地基对邻近基坑性状影响的研究[D].太原:太原理工大学, 2015.
JI Qingxiang. The research on influence to the behavior of adjacent excavation by existing composite foundation[D]. Taiyuan: Taiyuan University of Technology, 2015.
19 江杰,陈俊羽,马少坤,等.船坞基坑开挖对邻近桩基影响的三维数值分析[J].地下空间与工程学报, 2016, 12(增刊1): 246-253.
merical analysis of pile response due to the excavation of foundation pit at dock[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(Suppl. 1): 246-253.
[1] 蒋树磊,杨世锋,杨令航,师文明,邹福清,单青红. 城市快速路小间距并行高铁深塘跨越技术[J]. 山东大学学报 (工学版), 2019, 49(1): 91-100.
[2] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[3] 宋修广,周健,侯越,葛智,孙仁娟. 抗分散透水性混凝土性能研究[J]. 山东大学学报(工学版), 2016, 46(4): 60-67.
[4] 张娜1,2,崔新壮1,2*,张炯1,2,周亚旭1,2,高智珺1,2,隋伟1,2. 路堤荷载作用下透水性混凝土桩减压降沉效应研究[J]. 山东大学学报(工学版), 2013, 43(4): 80-86.
[5] 崔新壮1,2,王聪1,2,周亚旭1,2,张娜1,2,高智珺1,2. 透水性混凝土桩减压减震耦合抗震机理研究[J]. 山东大学学报(工学版), 2012, 42(4): 86-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[2] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[3] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[4] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[5] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[6] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[7] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[8] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[9] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[10] 李辉平, 赵国群, 张雷, 贺连芳. 超高强度钢板热冲压及模内淬火工艺的发展现状[J]. 山东大学学报(工学版), 2010, 40(3): 69 -74 .