[1] |
LAN Long, WANG Xinchao, HUA Gang, et al. Semi-online multi-people tracking by re-identification[J]. International Journal of Computer Vision, 2020, 128(7): 1-19.
|
[2] |
XU Y H, OSEP A, BAN Y T, et al. How to train your deep multi-object tracker[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020: 6787-6796.
|
[3] |
LIU Qiankun, CHU Qi, LIU Bin, et al. GSM: graph similarity model for multi-object tracking[C] //Proceedings of the International Joint Conference on Artificial Intelligence. Yokohama, Japan: Morgan Kaufmann, 2020: 530-536.
|
[4] |
侯建华,张国帅,项俊. 基于深度学习的多目标跟踪关联模型设计[J]. 自动化学报, 2020, 46(12): 2690-2700. HOU Jianhua, ZHANG Guoshuai, XIANG Jun. Designing affinity model for multiple object tracking based on deep learning[J]. Acta Automatica Sinica, 2020, 46(12): 2690-2700.
|
[5] |
朱珠. 卷积神经网络的多目标跟踪系统[J]. 网络空间安全, 2018, 9(11):68-71. ZHU Zhu. Multi-object tracking system by convolution neural networks[J]. Cyberspace Security, 2018, 9(11):68-71.
|
[6] |
孙金萍, 丁恩杰, 鲍蓉, 等. 多特征融合的长时间目标跟踪算法[J]. 南京大学学报(自然科学版), 2021, 57(2): 217-226. SUN Jinping, DING Enjie, BAO Rong, et al. Long-term object tracking algorithm based on multi-feature fusion[J]. Journal of Nanjing University(Natural Sciences), 2021, 57(2): 217-226.
|
[7] |
BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C] //Proceedings of the 2016 IEEE International Conference on Image Processing. Arizona, USA: IEEE, 2016: 3464-3468.
|
[8] |
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C] //Proceedings of the 2017 IEEE International Conference on Image Processing. Beijing, China: IEEE, 2017: 3645-3649.
|
[9] |
YIN Junbo, WANG Wenguan, MENG Qinghao, et al. A unified object motion and affinity model for online multi-object tracking[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020: 6768-6777.
|
[10] |
HENSCHEL R, ZOU Y Z, ROSENHAHN B. Multiple people tracking using body and joint detections[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA: IEEE, 2019: 770-779.
|
[11] |
TANG Peng, WANG Chunyu, WANG Xinggang, et al. Object detection in videos by high quality object linking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(5): 1272-1278.
|
[12] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2980-2988.
|
[13] |
LU Z C, RATHOD V, VOTEL R, et al. Retinatrack: online single stage joint detection and tracking[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle, USA: IEEE, 2020: 14668-14678.
|
[14] |
PENG Jinlong, WANG Chang'an, WAN Fangbin, et al. Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[C] //Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 145-161.
|
[15] |
ZHOU X Y, KOLTUN V, KRAHENBUHL P. Tracking objects as points[C] //Proceedings of the European Conference on Computer Vision.Berlin, Germany: Springer, 2020: 474-490.
|
[16] |
ZHANG Yifu, WANG Chunyu, WANG Xinggang, et al. Fairmot: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087.
|
[17] |
ZHENG Linyu, TANG Ming, CHEN Yingying, et al. Improving multiple object tracking with single object tracking[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021: 2453-2462.
|
[18] |
FARHADI A,REDMON J. Yolov3: an incremental improvement[EB/OL].(2018-04-08)[2022-04-11]. https://arxiv.org/abs/1804.02767.
|
[19] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-yolov4: scaling cross stage partial network[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021: 13029-13038.
|
[20] |
LIANG Chao, ZHANG Zhipeng, LU Yi, et al. Rethinking the competition between detection and reid in multi-object tracking[J]. IEEE Transactions on Image Processing, 2022, 31: 3182-3196.
|
[21] |
GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: exceeding yolo series in 2021[EB/OL].(2021-07-18)[2022-04-11]. https://arxiv.org/abs/2107.08430.
|
[22] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE, 2020: 390-391.
|
[23] |
LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 8759-8768.
|
[24] |
ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL].(2017-10-25)[2022-04-11]. https://arxiv.org/abs/1710.09412.
|
[25] |
GE Zheng, LIU Songtao, LI Zeming, et al. OTA: optimal transport assignment for object detection[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021: 303-312.
|
[26] |
刘彩虹, 张磊, 黄华. 交通路口监控视频跨视域多目标跟踪的可视化[J]. 计算机学报, 2018, 41(1): 221-235. LIU Caihong, ZHANG Lei, HUANG Hua. Visualization of cross-view multi-object tracking for surveillance videos in crossroad[J]. Chinese Journal of Computers, 2018, 41(1): 221-235.
|
[27] |
张子龙, 王永雄. 基于卡尔曼滤波的SiamRPN目标跟踪方法[J]. 智能计算机与应用, 2020, 10(3): 44-50. ZHANG Zilong, WANG Yongxiong. SiamRPN network for object tracking based on Kalman filter[J]. Intelligent Computer and Applications, 2020, 10(3): 44-50.
|
[28] |
CHEN Long, AI Haizhou, ZHUANG Zijie, et al. Real-time multiple people tracking with deeply learned candidate selection and person re-identification[C] //Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. San Diego, USA: IEEE, 2018: 1-6.
|
[29] |
PANG Jiangmiao, QIU Linlu, LI Xia, et al. Quasi-dense similarity learning for multiple object tracking[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021: 164-173.
|
[30] |
ZHANG Yifu, SUN Peize, JIANG Yi, et al. ByteTrack: multi-object tracking by associating every detection box[C] // Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 1-21.
|
[31] |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 658-666.
|
[32] |
BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: the clear mot metrics[J]. EURASIP Journal on Image and Video Processing, 2008, 2008(1): 1-10.
|
[33] |
LUITEN J, OSEP A, DEMDPRFER P, et al. Hota: a higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision, 2021, 129(2): 548-578.
|
[34] |
WANG Y X, KITANI K, WENG X S. Joint object detection and multi-object tracking with graph neural networks[C] //Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Xi'an, China: IEEE, 2021: 13708-13715.
|
[35] |
WANG Qiang, ZHENG Yun, PAN Pan, et al. Multiple object tracking with correlation learning[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021: 3876-3886.
|