Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (2): 70-76.doi: 10.6040/j.issn.1672-3961.0.2022.086

Previous Articles     Next Articles

Semantic supplement method for named entity recognition based on Affix-Attention

SONG Jiarui1,2, CHEN Yanping1,2*, WANG Kai1,2, HUANG Ruizhang1,2, QIN Yongbin1,2   

  1. 1. State Key Laboratory of Public Big Data, Guiyang 550025, Guizhou, China;
    2. College of Computer Science and Technology, Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2022-03-04 Online:2023-04-22 Published:2023-04-21

CLC Number: 

  • TP301
[1] 刘浏, 王东波. 命名实体识别研究综述[J]. 情报学报, 2018, 37(3): 329-340. LIU Liu, WANG Dongbo. A review of research on named entity recognition[J]. Journal of Information, 2018, 37(3): 329-340.
[2] 孙镇, 王惠临. 命名实体识别研究进展综述[J]. 现代图书情报技术, 2010(6): 42-47. SUN Zhen, WANG Huilin. A review of the research progress of named entity recognition[J]. Modern Library and Lnformation Technology, 2010(6): 42-47.
[3] 江千军, 桂前进, 王磊,等. 命名实体识别技术研究进展综述[J]. 电力信息与通信技术, 2022, 20(2): 15-24 JIANG Qianjun, GUI Qianjin, WANG Lei, et al. A review of the research progress of named entity recognition technology[J] Power Information and Communication Technology, 2022, 20(2): 15-24.
[4] CHITICARIU L, KRISHNAMURTHY R, LI Y, et al. Domain adaptation of rule-based annotators for named-entity recognition tasks[C] //Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Piscataway, USA: IEEE Computer Society, 2010: 1002-1012.
[5] SHEN D, ZHANG J, ZHOU G, et al. Effective adaptation of hidden markov model-based named entity recognizerfor biomedical domain[C] //Proceedings of the ACL 2003 Workshop on Natural Language Processing in Biomedicine. Sapporo, Japan: ACL, 2003: 49-56.
[6] ZHANG J, SHEN D, ZHOU G, et al. Enhancing hmm-based biomedical named entity recognition by studying special phenomena[J]. Journal of Biomedical Informatics, 2004, 37(6): 411-422.
[7] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].(2015-08-09)[2021-08-07]. https://arxiv.org/pdf/1508.01991.
[8] SANG E F, DE Meulder F. Introduction to the CoNLL-2003 shared task: language-independent name dentity recognition[EB/OL].(2003-01-05)[2021-09-12].http://www.ling.helsinki.fi/kit/2008s/clt350/docs/CoNLL-2003-Entities.
[9] JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C] //Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Volume 1(Long Papers). New Orleans, Louisiana: ACL, 2018: 1446-1459.
[10] SMITH L, TANABE L K, KUO C J, et al. Overview of BioCreative II gene mention recognition[J]. Genome Biology, 2008, 9(2): 1-19.
[11] SETTLES B. Biomedical named entity recognition using conditional random fields and rich feature sets[C] //Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications(NLPBA/BioNLP). Geneva, Switzerland: [s.n.] , 2004: 107-110.
[12] WANG X, YANG C, GUAN R. A comparative study for biomedical named entity recognition[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(3): 373-382.
[13] ZHOU G D, SU J. Exploring deep knowledge resources in biomedical name recognition[C] //Proceedings of the International Joint: Workshop on Natural Language Processing in Biomedicine and its Applications(NLPBA/BioNLP). Geneva, Switzerland: [s.n.] , 2004: 99-102.
[14] LIAO Z, WU H. Biomedical named entity recognition based on skip-chain Crfs[C] //2012 International Conference on Industrial Control and Electronics Engin-eering. Piscataway, USA: IEEE Computer Society, 2012: 1495-1498.
[15] TANG B, CAO H, WANG X, et al. Evaluating word representation features in biomedical named entity recognition tasks[J]. BioMed Research International, 2014: 1-6.
[16] CHANG F X, GUO J, XU W R, et al. Application of word embeddings in biomedical named entity recognition tasks[J]. Journal of Digital Information Management, 2015, 13(5): 321-327.
[17] YAO L, LIU H, LIU Y, et al. Biomedical named entity recognition based on deep neutral network[J]. Int J Hybrid Inf Technol, 2015, 8(8): 279-288.
[18] LI L, JIN L, JIANG Y, et al. Recognizing biomedical named entities based on the sentence vector/twin word embedding conditioned bidirectional LSTM[C] // Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Yantai, China: Springer International Publishing, 2016: 165-176.
[19] LI L, GUO Y K. Biomedical named entity recognition with CNN-BLSTM-CRF[J]. Journal of Chinese Information Processing, 2018, 32(1): 116-122.
[20] NING G, BAI Y. Biomedical named entity recognition based on Glove-BLSTM-CRF model[J]. Journal of Computational Methods in Sciences and Engineering, 2021, 21(1), 125-133.
[21] XU Y, HUANG H, FENG C, et al. A supervised multi-head self-attention network for nested named entity recognition[C] //Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, Louisiana: ACL, 2021, 35(16): 14185-14193.
[22] LIU T, YAO J G, LIN C Y. Towards improving neural named entity recognition with gazetteers[C] //Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019: 5301-5307.
[23] LE A, MORITA H, IWAKURA T. Learning entity-likeness with multiple approximate matches for biomedical NER[C] //Proceedings of the International Conference on Recent Advances in Natural Language Processing(RANLP 2021).[S.l.] : [s.n.] ,2021: 1040-1049.
[24] KURU O, CAN O A, YURET D. Char NER: Character-level named entity recognition[C] // Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016: 911-921.
[25] SHEN Y, YUN H, LIPTON Z C, et al. Deep active learning for named entity recognition[EB/OL].(2018-02-04)[2021-09-10].https://arxiv.org/pdf/1707.05928.
[26] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing(almost)from scratch[J]. Journal of Machine Learning Research, 2011, 12(ARTICLE):2493-2537.
[27] STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[EB/OL].(2017-07-22)[2021-09-13]. https://arxiv.org/pdf/1702.02098.
[28] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[EB/OL].(2016-04-07)[2021-09-13]. https://arxiv.org/pdf/1603.01360.
[29] XU M, JIANG H. A FOFE-based local detection approach for named entity recognition and mention detection[EB/OL].(2016-04-07)[2021-09-17]. https://arxiv.org/pdf/1603.01360.
[30] YANG Z, SALAKHUTDINOV R, COHEN W. Multi-task cross-lingual sequence tagging from scratch[EB/OL].(2016-08-09)[2021-09-22]. https://arxiv.org/pdf/1603.06270.
[31] MA X, HOVY E. End-to-end sequence labeling via bi-directional lstm-cnns-crf[EB/OL].(2016-05-29)[2021-09-25]. https://arxiv.org/pdf/1603.01354.
[1] Jucheng YANG,Shujie HAN,Lei MAO,Xiangzi DAI,Yarui CHEN. Review of capsule network [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 1-10.
[2] Bo FANG,Hongmei CHEN. A novel double strategies evolutionary fruit fly optimization algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 22-31.
[3] LIANG Zehua, CUI Yaodong, ZHANG Yu. The one-dimensional cutting stock problem with sequence-dependent cut losses [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 75-80.
[4] WU Hongyan, JI Junzhong. Flower pollination algorithm-based functional module detection in protein-protein interaction networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 21-30.
[5] ZHOU Zhijie, ZHAO Fujun, HU Changhua, WANG Li, FENG Zhichao, LIU Taoyuan. Failure prognosis method based on evidential reasoning for aerospace relay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 22-29.
[6] PEI Xiaobing, CHEN Huifen, ZHANG Baizhan, CHEN Menghui. Improved bi-variables estimation of distribution algorithms for multi-objective permutation flow shop scheduling problem [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 25-30.
[7] REN Yongfeng, DONG Xueyu. An image saliency object detection algorithm based on adaptive manifold similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 56-62.
[8] ZHAI Jiyou, ZHOU Jingbo, REN Yongfeng, WANG Zhijian. A visual saliency detection based on background and foreground interaction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 80-85.
[9] WU Huimin, WU Jingli. An improved cycle basis algorithm for haplotyping a diploid individual [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 9-14.
[10] ZHU Jie, WANG Jing, LIU Fei, GAO Guandong, DUAN Qing. Object classification method based on component pyramid matching [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 14-21.
[11] JING Yunge, LI Tianrui. An incremental approach for reduction based on knowledge granularity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 1-9.
[12] WANG Lihong, LI Qiang. A selective ensemble method for traveling salesman problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 42-48.
[13] REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 1-6.
[14] GAO Yanpu, WANG Xiangdong, WANG Dongqing. Maximum likelihood identification method for a multivariable controlled autoregressive moving average system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 49-55.
[15] LU Wenyang, XU Jiayi, YANG Yubin. LDA-based link prediction in social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1]

YANG Guohui1, SUN Xiaoyu1,2*, TSUBAKI Noritatsu1

. Zeolite capsule catalyst for biogasoline[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 92 -97 .
[2] ZHAO Wei, AI Hongqi. pH effect on the structure of Aβ42 fibrils[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 134 -138 .
[3] ZHONG Qian-qian, YUE Qin-yan*, LI Qian, LI Ying, XU Xing, GAO Bao-yu. Kinetics of the adsorption of Reactive Brilliant Red K-2BP onto    modified wheat residue[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 133 -139 .
[4] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[5] LIU Yun,QIU Xiao-guo . COD determination by interpolation of the  TOC coefficient method[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(4): 108 -117 .
[6] DUN Yue-Qin, MIN Yue, YUAN Jian-Sheng. Characteristic analysis of the forward response of array lateral logging[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 121 -125 .
[7] LIN Yan,WEI Dong, . LIN Yan1,WEI Dong2[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 103 -107 .
[8] ZHENG Gui-lan,MA Qing-lei,PAN Xiu-hua . Research on a design method of asphalt overlay on the used cement concrete pavement[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(4): 93 -97 .
[9] JI Xingquan, HAN Guozheng, LI Kejun, FU Rongrong, ZHU Yanghe. Application of improved K-means clustering algorithm based on density in distribution network block partitioning[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 41 -46 .
[10] XU Zhen, LI Deming, WANG Bin, ZHAN Guyi, ZHANG Shijie. Application of pure steel fiber concrete segment in hard rock tunnel[J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 44 -49 .