Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (4): 12-19.doi: 10.6040/j.issn.1672-3961.0.2021.547

• Machine Learning & Data Mining • Previous Articles     Next Articles

Pre-allocation of resources based on trajectory prediction in heterogeneous networks

Xiaobin XU1(),Qi WANG1,Bin GAO1,Zhiyu SUN2,*(),Zhongjun LIANG3,Shangguang WANG4   

  1. 1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
    2. Meteorological Information Center, Xinjiang Meteorological Information Center, Urumqi 830002, Xinjiang, China
    3. Data Service Department, National Meteorological Information Center, Beijing 100081, China
    4. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2021-11-15 Online:2022-08-20 Published:2022-08-24
  • Contact: Zhiyu SUN E-mail:xuxiaobin@bjut.edu.cn;ilsunyu@163.com

Abstract:

Aiming at the problems of insufficient trajectory feature learning, low precision of trajectory prediction results, and coarse particles in the research of network resource management methods for trajectory prediction, a trajectory prediction algorithm of bidirectional recurrent neural network was proposed. Through in-depth mining of the user′s movement rules, the user′s movement prediction was realized. According to the user′s mobile prediction information, the network resource pre-allocation plan was designed and the mobile behavior was divided into network resources, then the collaborative resource optimization management of multiple cells was realized. The simulation results showed that in the trajectory prediction problem, the trajectory prediction algorithm of the bidirectional recurrent neural networked had better comprehensive performance than the ordinary neural network algorithm. In the problem of network resource management, the network resource management pre-allocation scheme of trajectory prediction could accurately predict the base station connected by users, so that the base station had a higher resource utilization rate.

Key words: heterogeneous network, network resource management, trajectory prediction, resource pre-allocation, collaborative management

CLC Number: 

  • TP391

Fig.1

Internal structure of BRNN"

Fig.2

Trajectory prediction model based on BRNN"

Fig.3

Heterogeneous network scenario"

Table 1

Trajectory prediction algorithm comparison test parameter setting"

神经元数量 批量大小 训练轮次 预测窗口 学习率
64 64 45 4 10-3

Table 2

Parameter setting of heterogeneous network simulation environment"

ssize/m Mnum mnum Mbandwidth/GHz mbandwidth/GHz
30 4 9 1 0.1

Table 3

Error comparison results when the training set is 80%"

模型名称 MAE MSE RMSE
BRNN 0.563 2 0.479 4 0.692 3
RNN 1.163 9 2.005 1 1.416 0
LSTM 0.973 1 1.879 1 1.370 8
GRU 0.801 0 1.240 7 1.113 8

Table 4

Error comparison results when the training set is 90%"

模型名称 MAE MSE RMSE
BRNN 0.592 5 0.692 4 0.832 1
RNN 4.607 1 1.650 3 1.284 6
LSTM 4.819 3 1.802 4 1.342 5
GRU 3.744 3 1.516 7 1.231 5

Fig.4

Generated four movement modes"

Table 5

Comparison results of four mean errors of 90% training set"

模型名称 MAE MSE RMSE
BRNN 0.617 6 0.781 6 0.884 0
RNN 4.744 2 1.716 6 1.310 2
LSTM 4.998 0 1.904 7 1.380 1
GRU 3.845 4 1.457 5 1.207 3

Table 6

Comparison results of time complexity  s"

模型名称 训练时间 预测时间
BRNN 41.386 6 0.056 1
RNN 20.541 5 0.030 2
LSTM 49.420 8 0.063 8
GRU 46.079 6 0.058 7

Fig.5

Accuracy of cell access for different models under different number of user equipment"

Table 7

The accuracy of each base station under different models  %"

基站名称 BRNN RNN LSTM GRU
MBS1 95.50 84.76 86.89 94.29
MBS2 88.30 80.83 86.32 87.10
MBS3 93.28 85.15 84.47 86.67
MBS4 90.91 83.67 88.35 93.02
mBS1 96.36 89.19 94.12 98.53
mBS2 94.17 85.16 92.70 93.92
mBS3 97.37 88.37 91.67 95.89
mBS4 93.44 91.38 92.19 90.00
mBS5 91.53 90.23 92.11 93.77
mBS6 93.57 88.72 87.40 87.30
mBS7 97.14 96.30 92.19 93.44
mBS8 94.03 90.77 90.40 90.23
mBS9 93.85 93.06 86.27 95.83

Table 8

The recall rate of each base station under different models  %"

基站名称 BRNN RNN LSTM GRU
MBS1 87.60 84.76 88.33 90.00
MBS2 90.22 80.83 87.07 92.05
MBS3 91.74 85.15 90.63 85.85
MBS4 89.11 83.67 82.73 88.24
mBS1 96.36 89.19 93.02 91.78
mBS2 95.76 85.16 89.44 92.05
mBS3 96.10 88.37 91.67 94.59
mBS4 95.80 91.38 91.47 95.12
mBS5 94.74 90.23 91.42 93.05
mBS6 92.91 88.72 90.98 90.91
mBS7 97.14 96.30 89.39 91.94
mBS8 92.65 90.77 90.40 93.75
mBS9 95.31 93.06 91.67 100.00

Fig.6

Spectrum utilization of different models under different number of user equipment"

1 TENG Yinglei , LIU Mengting , YU FRichard , et al. Resource allocation for ultra-dense networks: a survey, some research issues and challenges[J]. Communications Surveys and Tutorials, 2019, 21 (3): 2134- 2168.
doi: 10.1109/COMST.2018.2867268
2 ALI Nawaz , RAHIM Noora , RAHMAN Ashiqur , et al. Efficient real-time coding-assisted heterogeneous data access in vehicular networks[J]. IEEE Internet of Things Journal, 2018, 5 (5): 3499- 3512.
doi: 10.1109/JIOT.2018.2830315
3 LEE Juho , TEJEDOR Erika , RANTA-AHO Karri , et al. Spectrum for 5G: global status, challenges, and enabling technologies[J]. IEEE Communications Magazine, 2018, 56 (3): 12- 18.
doi: 10.1109/MCOM.2018.1700818
4 ZHOU Yibo , FADLULLAH Zubair , MAO Bomin , et al. A deep-learning-based radio resource assignment technique for 5G ultra dense networks[J]. IEEE Network, 2018, 32 (6): 28- 34.
doi: 10.1109/MNET.2018.1800085
5 OMHENI Nouri , IMEN Bouabidi , GHARSALLAH Amina , et al. Smart mobility management in 5G heterogeneous networks[J]. Iet Networks, 2017, 7 (3): 119- 128.
6 ZHANG Hongtao , DAI Lingcheng . Mobility prediction: a survey on state-of-the-art schemes and future applications[J]. IEEE Access, 2018, 7, 802- 822.
7 PAMUKLU Turgay , CAVDAR Cicek , ERSOY Cem . Renewable energy assisted function splitting in cloud radio access networks[J]. Mobile Networks and Applications, 2020, 25, 2012- 2023.
doi: 10.1007/s11036-020-01544-0
8 JIANG Feibo , WANG Kezhi , DONG Li , et al. Deep-learning-based joint resource scheduling algorithms for hybrid MEC networks[J]. IEEE Internet of Things Journal, 2019, 7 (7): 6252- 6265.
9 HOSSAIN Farhad , MAHIN Ayman , DEBNATH Topojit , et al. Recent research in cloud radio access network (C-RAN) for 5G cellular systems-a survey[J]. Journal of Network and Computer Applications, 2019, 139, 31- 48.
doi: 10.1016/j.jnca.2019.04.019
10 SABELLA Dario , VAILLANT Alessandro , KUURE Pekka , et al. Mobile-edge computing architecture: the role of MEC in the Internet of Things[J]. IEEE Consumer Electronics Magazine, 2016, 5 (4): 84- 91.
doi: 10.1109/MCE.2016.2590118
11 ZHANG Jian , WU Muqing , ZHAO Min . Joint computation offloading and resource allocation in C-RAN with MEC based on spectrum efficiency[J]. IEEE Access, 2019, 7, 79056- 79068.
doi: 10.1109/ACCESS.2019.2922702
12 MIN Feng, LI Guomin, GONG Wenrong. Hetero-geneous network resource allocation optimization based on improved bat algorithm[C]// Processing of International Conference on Sensor Networks and Signal. Xi'an, China: IEEE, 2018: 55-59.
13 ZHANG Hong , HUANG Chuang , ZHOU Jing , et al. QoS-aware virtualization resource management mech-anism in 5G backhaul heterogeneous networks[J]. IEEE Access, 2020, 8, 19479- 19489.
doi: 10.1109/ACCESS.2020.2967101
14 HUANG Chennjung, CHEN Pochiang, GUAN Chihtai, et al. A probabilistic mobility prediction based resource management scheme for WiMAX femtocells[C]//2010 International Conference on Measuring Technology and Mechatronics Automation. Changsha, China: IEEE, 2010: 295-300.
15 GOMES Andre , SOUSA Bruno , PALMA David , et al. Edge caching with mobility prediction in virtualized LTE mobile networks[J]. Future Generation Computer Systems, 2017, 70 (190): 148- 162.
16 LI Bangxu, ZHANG Hongtao, LU Haitao. User mobility prediction based on Lagrange's interpolation in ultra-dense networks[C]//IEEE International Symposium on Personal. Valencia, Spain: IEEE, 2016: 106-115.
17 OZTURK Metin , GOGATE Mandar , ONIRETI Oluwakayode , et al. A novel deep learning driven low-cost mobility prediction approach for 5G cellular networks: the case of the control/data separation architecture (CDSA)[J]. Neurocomputing, 2019, 358 (17): 479- 489.
18 ADEGE Abebe , LIN Hsinpiao , WANG Lichun . Mobility predictions for IoT devices using gated recurrent unit network[J]. IEEE Internet of Things Journal, 2019, 7 (1): 505- 517.
19 SONG Chaoming , QU Zehui , BLUMM Nicholas , et al. Limits of predictability in human mobility[J]. Science, 2010, 327 (5968): 1018- 1021.
doi: 10.1126/science.1177170
20 IRIO Luis , FURTADO Antonio , OLIVEIRA Rodolfo , et al. Interference characterization in random waypoint mobile networks[J]. IEEE Transactions on Wireless Communications, 2018, 17 (11): 7340- 7351.
doi: 10.1109/TWC.2018.2866426
[1] Yinfeng MENG,Qingfang LI. Recognition learning based on multivariate functional principal component representation [J]. Journal of Shandong University(Engineering Science), 2022, 52(3): 1-8.
[2] Xiushan NIE,Yuling MA,Huiyan QIAO,Jie GUO,Chaoran CUI,Zhiyun YU,Xingbo LIU,Yilong YIN. Survey on student academic performance prediction from the perspective of task granularity [J]. Journal of Shandong University(Engineering Science), 2022, 52(2): 1-14.
[3] Tongyu JIANG,Fan CHEN,Hongjie HE. Lightweight face super-resolution network based on asymmetric U-pyramid reconstruction [J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 1-8, 18.
[4] Jun HU,Dongmei YANG,Li LIU,Fujin ZHONG. Cross social network user alignment via fusing node state information [J]. Journal of Shandong University(Engineering Science), 2021, 51(6): 49-58.
[5] Ye LIANG,Nan MA,Hongzhe LIU. Image-dependent fusion method for saliency maps [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 1-7.
[6] Xinlu ZONG,Jiayuan DU. Evacuation simulation model based on multi-target driven artificial bee colony algorithm [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 1-6.
[7] TAO Liang, LIU Baoning, LIANG Wei. Automatic detection research of arrhythmia based on CNN-LSTM hybrid model [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 30-36.
[8] YANG Xiuyuan, PENG Tao, YANG Liang, LIN Hongfei. Adaptive multi-domain sentiment analysis based on knowledge distillation [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 15-21.
[9] FU Guixia, ZOU Guofeng, MAO Shuai, PAN Jinfeng, YIN Liju. Small sample person re-identification combining Gabor features and convolution features [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 22-29.
[10] Junsan ZHANG,Qiaoqiao CHENG,Yao WAN,Jie ZHU,Shidong ZHANG. MIRGAN: a medical image report generation model based on GAN [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 9-18.
[11] Fengyu ZHOU,Panlong GU,Fang WAN,Lei YIN,Jiakai HE. Overview of multi-motion vision odometer [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 1-10.
[12] WANG Mei, XUE Chenglong, ZHANG Qiang. Multi-kernel combination method based on rank spatial difference [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 108-113.
[13] Xiaolan XIE,Qi WANG. A scheduling algorithm based on multi-objective container cloud task [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 14-21.
[14] Guoyong CAI,Xinhao HE,Yangyang CHU. Visual sentiment analysis based on spatial attention mechanism and convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 8-13.
[15] Keyang CHENG,Shuang SUN,Yongzhao ZHAN. Modified SuBSENSE algorithm via adaptive distance threshold based on background complexity [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[9] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[10] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .