Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (4): 1-7.doi: 10.6040/j.issn.1672-3961.0.2020.266

• Machine Learning & Data Mining •     Next Articles

Image-dependent fusion method for saliency maps

Ye LIANG1,2(),Nan MA2,Hongzhe LIU1   

  1. 1. Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China
    2. College of Robotics, Beijing Union University, Beijing 100044, China
  • Received:2020-03-31 Online:2021-08-20 Published:2021-08-18

Abstract:

A saliency fusion method based on ridge regression was proposed to obtain better detection performance. The nearest neighbor set of the image to be detected was searched in the training set. The ridge regression method was used to estimate the fusion coefficients of different saliency maps. The saliency maps of different detection methods were fused. This method fully considered the differences of detection methods, and solved the problem of saliency map fusion in the absence of benchmark binary annotations. The AUC value of the proposed method was 0.911 on ECSSD dataset. The AUC value of the proposed method was 0.987 on HKU-IS dataset. The AUC value of the proposed method was 0.953 on DUT-OMRON dataset. The efficiency of the proposed method was verified by experimental results.

Key words: visual attention mechanism, saliency detection, saliency fusion, image-dependence, ridge regression

CLC Number: 

  • TP391.41

Fig.1

Some detection results of different methods"

Table 1

Detection results on ECSSD"

方法 F-measure AUC MAE
MR 0.637 0.834 0.237
BSCA 0.658 0.845 0.233
MBS 0.634 0.826 0.231
MC 0.628 0.837 0.251
SELD 0.769 0.866 0.156
DCL 0.699 0.889 0.162
DS 0.717 0.894 0.189
MDF 0.729 0.859 0.174
指数融合方法 0.718 0.901 0.199
线性融合方法 0.598 0.734 0.313
全局融合方法 0.659 0.875 0.332
本研究方法 0.777 0.911 0.171

Table 2

Detection results on HKU-IS"

方法 F-measure AUC MAE
MR 0.645 0.867 0.188
BSCA 0.661 0.910 0.175
MBS 0.681 0.920 0.174
MC 0.651 0.909 0.184
SELD 0.799 0.958 0.074
DCL 0.748 0.977 0.072
DS 0.811 0.981 0.079
MDF 0.770 0.969 0.129
指数融合方法 0.773 0.980 0.126
线性融合方法 0.531 0.808 0.309
全局融合方法 0.758 0.915 0.183
本文方法 0.818 0.987 0.071

Table 3

Detection results on DUT-OMRON"

方法 F-measure AUC MAE
MR 0.406 0.727 0.246
BSCA 0.574 0.865 0.192
MBS 0.576 0.868 0.157
MC 0.403 0.771 0.238
SELD 0.677 0.914 0.092
DCL 0.629 0.922 0.097
DS 0.675 0.940 0.120
MDF 0.663 0.898 0.093
指数融合方法 0.677 0.943 0.129
线性融合方法 0.448 0.759 0.370
全局融合方法 0.567 0.863 0.239
本文方法 0.688 0.953 0.092

Table 4

Detection results on ECSSD"

方法 Smeasure wFmeasure Emeasure
MR 0.639 0.476 0.599
BSCA 0.668 0.495 0.627
MBS 0.632 0.499 0.648
MC 0.640 0.441 0.579
SELD 0.760 0.717 0.805
DCL 0.784 0.698 0.769
DS 0.746 0.618 0.687
MDF 0.712 0.653 0.735
本文方法 0.786 0.721 0.787

Table 5

Detection results on HKU-IS"

方法 Smeasure wFmeasure Emeasure
MR 0.669 0.444 0.622
BSCA 0.702 0.467 0.658
MBS 0.714 0.493 0.697
MC 0.687 0.423 0.612
SELD 0.820 0.742 0.876
DCL 0.860 0.739 0.840
DS 0.852 0.709 0.846
MDF 0.810 0.564 0.739
本文方法 0.863 0.736 0.880

Table 6

Detection results on DUT-OMRON"

方法 Smeasure wFmeasure Emeasure
MR 0.645 0.380 0.626
BSCA 0.652 0.370 0.629
MBS 0.651 0.419 0.678
MC 0.649 0.347 0.610
SELD 0.750 0.592 0.789
DCL 0.764 0.575 0.750
DS 0.750 0.487 0.704
MDF 0.721 0.565 0.758
本文方法 0.758 0.597 0.793

Fig.2

Detection results on ECCSD"

Fig.3

Detection results on HKU-IS"

Fig.4

Detection results on DUT-OMRON"

1 KOCH Christof , ULLMAN Shimon . Shifts in selective visual attention: towards the underlying neural circuitry[J]. Human Neurbiology, 1985, 4 (4): 219- 227.
2 ITTI Laurent , KOCH Christof , Niebur Ernst . A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (11): 1254- 1259.
doi: 10.1109/34.730558
3 CHENG Mingming , ZHANG Guoxin , MITRA Niloy J , et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 569- 582.
doi: 10.1109/TPAMI.2014.2345401
4 SHEN Xiaohui, WU Ying. A unified approach to salient object detection via low rank matrix Recovery[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Providence, America: IEEE Press, 2012: 853-860.
5 CHENG Mingming, WARRELL Jonathan, LIN Wenyan, et al. Efficient salient region detection with soft image abstraction[C]//Proceedings of IEEE International Conference on Computer Vision. Sydney, Australia: IEEE Press, 2013: 1529-1536.
6 YAN Qiong, XU Li, SHI Jianping, et al. Hierarchical saliency detection[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Portland, America: IEEE Press, 2013: 1155-1162.
7 MARGOLIN Ran, TAL Ayellet, ZELNIKMANOR Lihi. What makes a patch distinct[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Portland, America: IEEE Press, 2013: 1139-1146.
8 JUDD Tilke M, EHINGER Krista, DURAND Frédo, et al. Learning to predict where humans look[C]//Proceedings of IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE Press, 2009: 2106-2113.
9 BORJI Ali. Boosting bottom-up and top-down visual features for saliency estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, America: IEEE Press, 2012, 157(10): 438-445.
10 CHENG Mingming, LIU Yun, LIN Wenyan, et al. Bing: binarized normed gradients for objectness estimation at 300fps[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, America: IEEE Press, 2014: 3286-3293.
11 WANG Jingdong , JIANG Huaizu , YUAN Zejian , et al. Salient object detection: A discriminative regional feature integration approach[J]. International Journal of Computer Vision, 2017, 123 (2): 251- 268.
doi: 10.1007/s11263-016-0977-3
12 WEI Yichen, WEN Fang, ZHU Wangjiang, et al. Geodesic saliency using background priors[C]//Proceedings of the European Conference on Computer Vision. Firenze, Italy: Springer, 2012: 29-42.
13 MAI Long, NIU Yuzhen, LIU Feng. Saliency aggregation: a data driven approach[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Portland, America: IEEE Press, 2013: 1131-1138.
14 LU Huchuan, RUAN Xiang, YANG Minghsuan. Deep networks for saliency detection via local estimation and global search[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Boston, America: IEEE Press, 2015: 3183-3192.
15 LI Guanbin, YU Yizhou. Visual saliency based on multiscale deep features[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, America: IEEE Press, 2015: 5455-5463.
16 ZHAO Rui, OUYANG Wanli, LI Hongsheng, et al. Saliency detection by multi-context deep learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, America: IEEE Press, 2015: 1265-1274.
17 ZHANG Pingping, WANG Dong, LU Huchuan, et al. Amulet: aggregating multi-level convolutional features for salient object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Venice, Italy: IEEE Press, 2017: 202-211.
18 HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connection[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hawai, America: IEEE Press, 2017: 3203-3212.
19 HU Xiaowei, ZHU Lei, QIN Jing, et al. Recurrently aggregating deep features for salient object detection[C]//Proceedings of Thirty-Second AAAI Conference on Artificial Intelligence. Louisiana, America: AAAI Press, 2018: 6943-6950.
20 LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. A simple pooling-based design for real-time salient object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. California, America: IEEE Press, 2019: 3917-3926.
21 QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. BASNet: boundary-aware salient object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Angeles, America: IEEE Press, 2019: 7479-7489.
22 MAI Long, LIU Feng. Comparing salient object detection results without ground truth[C]//Proceedings of European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 76-91.
23 LI Guanbin, YU Yizhou. Deep contrast learning for salient object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, America: IEEE Press, 2016: 478-487.
24 LEE Gayoung, TAI Yuwing, KIM Junmo. Deep saliency with encoded low level distance map and high level features[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, America: IEEE Press, 2016: 660-668.
25 LI Xi , ZHAO Liming , WEI Lina , et al. Deep saliency: multi-task deep neural network model for salient object detection[J]. IEEE Transactions on Image Processing, 2016, 25 (8): 3919- 3930.
doi: 10.1109/TIP.2016.2579306
26 JIANG Bowen, ZHANG Lihe, LU Huchuan, et al. Saliency detection via absorbing markov chain[C]//Proceedings of IEEE International Conference on Computer Vision. Sydney, Australia: IEEE Press, 2013: 1665-1672.
27 YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portlan, America: IEEE Press, 2013: 3166-3173.
28 QIN Yao, LU Huchuan, XU Yiqun. Saliency detection via cellular automata[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, America: IEEE Press, 2015: 110-119.
29 ZHANG Jianming, SCLAROFF Stan, LIN Zhe, et al. Minimum barrier salient object detection at 80 FPS[C]//Proceedings of IEEE International Conference on Computer Vision. Santiago, Chile: IEEE Press, 2015: 1404-1412.
30 MARGOLIN Ran, ZELNIKMANOR Lihi, TAL Ayellet. How to evaluate foreground maps?[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbu, America: IEEE Press, 2014: 248-255.
31 FAN Dengping, CHENG Mingming, LIU Yun. Structure- measure: a new way to evaluate foreground maps[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE Press, 2017: 4548-4557.
32 FAN Dengping, GONG Cheng, CAO Yang, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Stockholm, Sweden: IJCAI Press, 2018: 698-704.
[1] REN Yongfeng, DONG Xueyu. An image saliency object detection algorithm based on adaptive manifold similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 56-62.
[2] ZHAI Jiyou, ZHOU Jingbo, REN Yongfeng, WANG Zhijian. A visual saliency detection based on background and foreground interaction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 80-85.
[3] REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[7] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[8] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[9] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[10] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .