Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (6): 115-122.doi: 10.6040/j.issn.1672-3961.0.2022.087

• 机器学习与数据挖掘 • Previous Articles    

Adaptive feature reconstruction algorithm for few-shot object detection

LIU Dingbo1,2, LIU Xueyan2,3, YU Dongran2,4, YANG Bo2,3, LI Wei5*   

  1. 1. College of Software, Jilin University, Changchun 130012, Jilin, China;
    2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, Jilin, China;
    3. College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin, China;
    4. School of Artificial Intelligence, Jilin University, Changchun 130012, Jilin, China;
    5. School of Business and Management, Jilin University, Changchun 130012, Jilin, China
  • Published:2022-12-23

CLC Number: 

  • TP391
[1] 谢富, 朱定局.深度学习目标检测方法综述[J].计算机系统应用, 2022, 31(2): 1-12. XIE Fu, ZHU Dingju. Survey on deep learning object detection[J]. Computer Systems & Applications, 2022, 31(2):1-12.
[2] HU H, BAI S, LI A, et al. Dense relation distillation with context-aware aggregation for few-shot object detection[C] //Proceedings of CVPR-21. Nashville, USA: IEEE, 2021: 10185-10194.
[3] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C] //Proceedings of CVPR-20. Seattle, USA: IEEE, 2020: 10781-10790.
[4] ZHANG Y, KANG B, HOOI B, et al. Deep long-tailed learning:a survey[EB/OL].(2021-10-09)[2022-02-25]. https://arxiv.org/pdf/2110.04596.pdf.
[5] KÖHLER M, EISENBACH M, GROSS H M. Few-shot object detection: a survey[EB/OL].(2021-12-22)[2022-02-25].https://arxiv.org/pdf/2112.11699.pdf.
[6] BUDA M, MAKI A, MAZUROWSKI M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106: 249-259.
[7] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(2):318-327.
[8] KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C] //Proceedings of ICCV-19. Seoul, Korea: IEEE, 2019: 8420-8429.
[9] WANG Y X, RAMANAN D, HEBERT M. Meta-learning to detect rare objects[C] //Proceedings of ICCV-19. Seoul, Korea: IEEE, 2019: 9925-9934.
[10] YAN X, CHEN Z, XU A, et al. Meta r-cnn: towards general solver for instance-level low-shot learning[C] // Proceedings of ICCV-19. Seoul, Korea: IEEE, 2019: 9577-9586.
[11] WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[C] // Proceedings of ICML-20. Online: ACM, 2022: 9919-9928.
[12] WU J, LIU S, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C] // Proceedings of ECCV-20. Online: Springer, 2020: 456-472.
[13] SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding[C] // Proceedings of CVPR-21. Nashville, USA: IEEE, 2021: 7352-7362.
[14] TANG K, HUANG J, ZHANG H. Long-tailed classification by keeping the good and removing the bad momentum causal effect[J]. Advances in Neural Information Processing Systems, 2020, 33: 1513-1524.
[15] XU H, JIANG C, LIANG X, et al. Reasoning-rcnn: Unifying adaptive global reasoning into large-scale object detection[C] //Proceedings of CVPR-19. Long Beach, USA: IEEE, 2019: 6419-6428.
[16] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[17] EVERINGHAM M, ZISSERMAN A, WILLIAMS C K I, et al. The PASCAL visual object classes(VOC)challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
[18] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C] //Proceedings of ECCV-14. Zurich, Switzerland: Springer, 2014: 740-755.
[19] CHEN K, WANG J, PANG J, et al. MMDetection: open mmlab detection toolbox and benchmark[EB/OL].(2019-06-17)[2022-02-25]. https://arxiv.org/pdf/1906.07155.pdf.
[20] HEK, ZHANG X, REN S, et al. Deep residual learning for image recognition[C] //Proceedings of CVPR-16. Las Vegas, USA: IEEE, 2016:770-778.
[21] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C] //Proceedings of CVPR-17. Honolulu, USA: IEEE, 2017:2117-2125.
[1] Xiaobin XU,Qi WANG,Bin GAO,Zhiyu SUN,Zhongjun LIANG,Shangguang WANG. Pre-allocation of resources based on trajectory prediction in heterogeneous networks [J]. Journal of Shandong University(Engineering Science), 2022, 52(4): 12-19.
[2] Yinfeng MENG,Qingfang LI. Recognition learning based on multivariate functional principal component representation [J]. Journal of Shandong University(Engineering Science), 2022, 52(3): 1-8.
[3] Xiushan NIE,Yuling MA,Huiyan QIAO,Jie GUO,Chaoran CUI,Zhiyun YU,Xingbo LIU,Yilong YIN. Survey on student academic performance prediction from the perspective of task granularity [J]. Journal of Shandong University(Engineering Science), 2022, 52(2): 1-14.
[4] Tongyu JIANG,Fan CHEN,Hongjie HE. Lightweight face super-resolution network based on asymmetric U-pyramid reconstruction [J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 1-8, 18.
[5] Jun HU,Dongmei YANG,Li LIU,Fujin ZHONG. Cross social network user alignment via fusing node state information [J]. Journal of Shandong University(Engineering Science), 2021, 51(6): 49-58.
[6] Ye LIANG,Nan MA,Hongzhe LIU. Image-dependent fusion method for saliency maps [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 1-7.
[7] YANG Xiuyuan, PENG Tao, YANG Liang, LIN Hongfei. Adaptive multi-domain sentiment analysis based on knowledge distillation [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 15-21.
[8] FU Guixia, ZOU Guofeng, MAO Shuai, PAN Jinfeng, YIN Liju. Small sample person re-identification combining Gabor features and convolution features [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 22-29.
[9] TAO Liang, LIU Baoning, LIANG Wei. Automatic detection research of arrhythmia based on CNN-LSTM hybrid model [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 30-36.
[10] Xinlu ZONG,Jiayuan DU. Evacuation simulation model based on multi-target driven artificial bee colony algorithm [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 1-6.
[11] Junsan ZHANG,Qiaoqiao CHENG,Yao WAN,Jie ZHU,Shidong ZHANG. MIRGAN: a medical image report generation model based on GAN [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 9-18.
[12] Fengyu ZHOU,Panlong GU,Fang WAN,Lei YIN,Jiakai HE. Overview of multi-motion vision odometer [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 1-10.
[13] WANG Mei, XUE Chenglong, ZHANG Qiang. Multi-kernel combination method based on rank spatial difference [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 108-113.
[14] Xiaolan XIE,Qi WANG. A scheduling algorithm based on multi-objective container cloud task [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 14-21.
[15] Guoyong CAI,Xinhao HE,Yangyang CHU. Visual sentiment analysis based on spatial attention mechanism and convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!