Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (1): 108-113.doi: 10.6040/j.issn.1672-3961.0.2020.248
WANG Mei, XUE Chenglong, ZHANG Qiang
CLC Number:
[1] 王文剑,田萌.核选择研究进展[J].山西大学学报(自然科学版),2017,40(3):460-471. WANG Wenjian, TIAN Meng. Advances in kernel selection research[J]. Journal of Shanxi University(Natural Science Edition), 2017, 40(3):460-471. [2] SMOLA A J, SCHOLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222. [3] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. [4] KERM P V. Adaptive kernel density estimation[J]. Stata Journal, 2003, 3(2): 148-156. [5] 李阳. 多核学习SVM算法研究及肺结节识别[D].长春:吉林大学,2014. LI Yang. Multiple kernel learning SVM and lung nodule recognition[D]. Changchun: Jilin University, 2014. [6] SONNENBURG S, RATSCH G, SCHAFER C, et al. Large scale multiple kernel learning[J]. The Journal of Machine Learning Research, 2006, 7(7): 1531-1565. [7] BACH F R. Consistency of the group Lasso and multiple kernel learning[J]. The Journal of Machine Learning Research, 2008, 9(6): 1179-1225. [8] RAKOTOMAMONJY A, BACH F R, CANU S, et al. More efficiency in multiple kernel learning[C] //Proceedings of the 24th International Conference on Machine Learning. Corvalis, USA: ACM, 2007: 775-782. [9] CORTES C, MOHRI M, ROSTAMIZADEH A. Learning sequence kernels[C] //Proceedings of the International Conference on Machine Learning for Signal Processing. Washington D. C., USA: IEEE, 2008:2-8. [10] YANG Z, GUO J, XU W, et al. Multi-scale support vector machine for regression estimation[C] //Proceed-ings of the 3rd International Symposium on Neural Networks. Chengdu, China: Springer, 2006: 1030-1037. [11] SONNENBURG S, RATSCH G, SCHAFER C. A general and efficient multiple kernel learning algorithm[C] //Proceedings of the Advances in Neural Infor-mation Processing Systems. Vancouver, Canada: The MIT Press, 2005:1273-1280. [12] ZIEN A, ONG C S. Multiclass multiple kernel learning[C] //Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007: 1191-1198. [13] LIU Yong, LIAO Shizhong, LIN Hailun, et al. Infinite kernel learning: generalization bounds and algorithms[C] //Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA, 2017: 2280-2286. [14] LANCKRIET G R G, CRISTIANINI N, BARTLETT P, et al. Learning the kernel matrix with semidefinite programming[J]. The Journal of Machine Learning Research, 2004, 5(1): 27-72. [15] LEE W J, VERZAKOV S, DUIN R P. Kernel com-bination versus classifier combination[C] // Proceedings of the 7th International Workshop on Multiple Classifier Systems. Prague,Czech Republic: Springer, 2007:22-31. [16] 王梅,李董,孙莺萁,等.求解大规模问题的多核学习正则化路径算法[J].模式识别与人工智能,2018,31(2):190-196. WANG Mei, LI Dong, SUN Yingqi, et al. Regularization path algorithm of multiple kernel learning for solving large scale problems[J].Pattern Recognition and Artificial Intelligence, 2018, 31(2):190-196. [17] 汪洪桥,孙富春,蔡艳宁,等.多核学习方法[J].自动化学报,2010,36(8):1037-1050. WANG Hongqiao, SUN Fuchun, CAI Yanning, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8):1037-1050. [18] BENNETT K P, MOMMA M, EMBRECHTS M J. MARK: a boosting algorithm for heterogeneous kernel models[C] //Proceedings of 8th ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton,Canada: ACM, 2002: 24-31. [19] ONG C S, SMOLA A J, WILLIAMSON R C. Learning the kernel with hyperkernels[J]. The Journal of Machine Learning Research, 2005, 6(7): 1043-1071. [20] RAKOTOMAMONJY A, BACH F R, CANU S, et al. Simple MKL[J]. The Journal of Machine Learning Research, 2008, 9(11): 2491-2521. [21] 刘文婧,陈肖洁.多核LSSVM算法在轴承故障识别中的应用[J].机械设计与制造,2018(2):249-252. LI Wenjing, CHEN Xiaojie. Fault identification app-lication of rolling bearing based on LSSVM with multiple kernels[J]. Machinery Design & Manufacture, 2018(2):249-252. [22] 王庆超,付光远,汪洪桥,等.基于局部空间变稀疏约束的多核学习方法[J].电子学报,2018,46(4):930-937. WANG Qingchao, FU Guangyuan, WANG Hongqiao, et al. Local variable sparsity based multiple kernel learning algorithm[J]. Acta Electronica Sinica, 2018, 46(4): 930-937. [23] 陶剑文,王士同.多核局部领域适应学习[J].软件学报,2012,23(9):2297-2310. TAO Jianwen, WANG Shitong. Multiple kernel local learning-based domain adaptation[J]. Journal of Soft-ware, 2012, 23(9):2297-2310. [24] 李飞,杜亮,任超宏.基于全局融合的多核概念分解算法[J].计算机应用,2019,39(4):1021-1026. LI Fei, DU Liang, REN Chaohong. Multiple kernel concept factorization algorithm based on global fusion[J]. Journal of Computer Applications, 2019, 39(4):1021-1026. [25] 张庆朔,何强,张长伦,等.模糊多核一类支持向量机[J].北京建筑大学学报,2020,36(1):82-90. ZHANG Qingshuo, HE Qiang, ZHANG Changlun, et al. Fuzzy multiple kernel one-class support vector machine[J]. Journal of Beijing University of Civil Engineering and Architecture, 2020, 36(1):82-90. [26] 罗林开. 支持向量机的核选择[D].厦门:厦门大学,2007. LUO Linkai. Research on Kernel Selection of Support Vector Machine[D]. Xiamen: Xiamen University, 2007. |
[1] | Xiaolan XIE,Qi WANG. A scheduling algorithm based on multi-objective container cloud task [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 14-21. |
[2] | Guoyong CAI,Xinhao HE,Yangyang CHU. Visual sentiment analysis based on spatial attention mechanism and convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 8-13. |
[3] | Keyang CHENG,Shuang SUN,Yongzhao ZHAN. Modified SuBSENSE algorithm via adaptive distance threshold based on background complexity [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 38-44. |
[4] | Feng TIAN,Xin LI,Fang LIU,Chuang LI,Xiaoqiang SUN,Ruishan DU. A semantictag generation method based on multi-model subspace learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 31-37, 44. |
[5] | Jinping MA. A multi-microcontroller communication method based on UART asynchronous serial communication protocol [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 24-30. |
[6] | Gaoteng YUAN,Yihui LIU,Wei HUANG,Bing HU. MR image classification and recognition model of breast cancer based onGabor feature [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 15-23. |
[7] | Jiangli DUAN,Xin HU. Semantic relation recognition for natural language question answering [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 1-7. |
[8] | Baocheng LIU,Yan PIAO,Xuemei SONG. Adaptive fusion target tracking based on joint detection [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 51-57. |
[9] | Yunyang YAN,Chenxi DU,Yian LIU,Shangbing GAO. Fire detection based on lightweight convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 100-107. |
[10] | Shengnan ZHANG,Lei WANG,Chunhong CHANG,Benli HAO. Image denoising based on 3D shearlet transform and BM4D [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 83-90. |
[11] | Longmao HU,Xuegang HU. Identification of the same product feature based on multi-dimension similarity and sentiment word expansion [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 50-59. |
[12] | Yanping CHEN,Li FENG,Yongbin QIN,Ruizhang HUANG. A syntactic element recognition method based on deep neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 44-49. |
[13] | Wei YAN,Damin ZHANG,Huijuan ZHANG,Ziyun XI,Zhongyun CHEN. Improved bird swarm algorithms based on mixed decision making [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 34-43. |
[14] | Shiqi SONG,Yan PIAO,Zexin JIANG. Vehicle classification and tracking for complex scenes based on improved YOLOv3 [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 27-33. |
[15] | Ningning CHEN,Jianwei ZHAO,Zhenghua ZHOU. Visual tracking algorithm based on verifying networks [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 17-26. |
|