Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (3): 38-44.doi: 10.6040/j.issn.1672-3961.0.2019.413
• Machine Learning & Data Mining • Previous Articles Next Articles
Keyang CHENG1,2(),Shuang SUN1,Yongzhao ZHAN1
CLC Number:
1 | JAIN R , NAGEL H H . On the analysis of accumulative difference pictures from image sequences of real world scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1978, PAMI-1 (2): 206- 214. |
2 | BARRON J L , FLEET D J , BEAUCHEMIN S S , et al. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12 (1): 43- 77. |
3 |
BEAUGENDRE A , GOTO S . Block-propagative background subtraction system for UHDTV videos[J]. IPSJ Transactions on Computer Vision and Applications, 2015, 7, 31- 34.
doi: 10.2197/ipsjtcva.7.31 |
4 | MAITY S, CHAKRABARTI A, BHATTACHARJEE D. Block-based quantized histogram (BBQH) for efficient background modeling and foreground extraction in video[C]//2017 Inter-national Conference on Data Management, Analytics and Innovation. Pune, India: IEEE, 2017: 224-229. |
5 |
BARNICH O , VAN D M . ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20 (6): 1709- 1724.
doi: 10.1109/TIP.2010.2101613 |
6 | 惠开发, 成科扬, 詹永照. 基于改进ViBe算法的视频浓缩[J]. 山东大学学报(工学版), 2017, 47 (3): 43- 48. |
HUI Kaifa , CHENG Keyang , ZHAN Yongzhao . The video sy-nopsis based on the enhanced ViBe algorithm[J]. Journal of Shandong University (Engineering Science), 2017, 47 (3): 43- 48. | |
7 | HOFMANN M, TIEFENBACHER P, RIGOLL G. Backg-round segmentation with feedback: the pixel-based adaptive segmenter[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. New York, USA: IEEE, 2012: 38-43. |
8 | ST-CHARLES P L, BILODEAU G A. Improving background subtraction using local binary similarity patterns[C]// 2014 IEEE Winter Conference on Applications of Computer Vision. Steamboat Springs, USA: IEEE, 2014: 509-515. |
9 | 陈树, 丁保阔. 动态背景下自适应LOBSTER算法的前景检测[J]. 中国图象图形学报, 2017, 22 (2): 161- 169. |
CHEN Shu , DING Baokuo . Foreground detection of the adaptive LOBSTER algorithm in a dynamic background[J]. Journal of Image and Graphics, 2017, 22 (2): 161- 169. | |
10 |
杨丹, 戴芳. 运动目标检测的ViBe算法改进[J]. 中国图象图形学报, 2018, 23 (12): 1813- 1828.
doi: 10.11834/jig.180304 |
YANG Dan , DAI Fang . Improvement of ViBe algorithm for moving target detection[J]. Journal of Image and Graphics, 2018, 23 (12): 1813- 1828.
doi: 10.11834/jig.180304 |
|
11 | GUO Lili, XU Dan, QIANG Zhenping. Background subtraction using local svd binary pattern[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, USA: IEEE, 2016. |
12 |
ST-CHARLES P L , BILODEAU G A , BERGEVIN R . SuBSENSE: a universal change detection method with local adaptive sensitivity[J]. IEEE Transactions on Image Processing, 2015, 24 (1): 359- 373.
doi: 10.1109/TIP.2014.2378053 |
13 | 李静, 刘清, 颜为朗. 基于SuBSENSE的内河船舶检测波纹干扰抑制算法[J]. 交通信息与安全, 2017, 35 (2): 30- 34. |
LI Jing , LIU Qing , YAN Weilang . An algorithm for ripple suppression of inland ship detection based on SuBSENSE[J]. Journal of Transport Information and Safety, 2017, 35 (2): 30- 34. | |
14 | ST-CHARLES P L, BILODEAU G A, BERGEVIN R. A self-adjusting approach to change detection based on background word consensus[C]//2015 IEEE Winter Conference on Applications of Computer Vision. Waikoloa HI, USA: IEEE, 2015: 990-997. |
15 |
ST-CHARLES P L , BILODEAU G A , BERGEVIN R . Universal background subtraction using word consensus models[J]. IEEE Transactions on Image Processing, 2016, 25 (10): 4768- 4781.
doi: 10.1109/TIP.2016.2598691 |
16 | LUO Huaiye, LI Bo, ZHOU Zhiheng. Improved background subtraction based on word consensus models[C]//2017 International Symposium on Intelligent Signal Processing and Communication Systems. Xiamen, China: IEEE, 2017: 689-694. |
17 | 汪荣琪, 郑林, 王标. 基于改进的PBAS算法的前景目标检测[J]. 计算机科学, 2017, 44 (5): 294- 298. |
WANG Rongqi , ZHENG Lin , WANG Biao . Foreground object detection based on improved PBAS[J]. Computer Science, 2017, 44 (5): 294- 298. | |
18 |
钟忺, 汪梦, 张倩, 等. 一种基于纹理和颜色置信融合的运动目标检测方法[J]. 计算机应用研究, 2017, 34 (7): 2196- 2201.
doi: 10.3969/j.issn.1001-3695.2017.07.060 |
ZHONG Wei , WANG Meng , ZHANG Qian , et al. Moving object detection by fusing texture and color features with confidence[J]. Application Research of Computers, 2017, 34 (7): 2196- 2201.
doi: 10.3969/j.issn.1001-3695.2017.07.060 |
|
19 | WANG Yi, JODOIN P M, PORIKL F, et al. CDnet2014: an expanded change detection benchmark dataset[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Columbus, USA: IEEE, 2014. |
20 | 郭丽丽.面向复杂场景的运动目标检测技术研究[D].昆明:云南大学, 2017. |
GUO Lili. Research on techniques of moving object detection under complex environment[D]. Kunming: Yunnan University, 2017. |
[1] | Feng TIAN,Xin LI,Fang LIU,Chuang LI,Xiaoqiang SUN,Ruishan DU. A semantictag generation method based on multi-model subspace learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 31-37, 44. |
[2] | Jinping MA. A multi-microcontroller communication method based on UART asynchronous serial communication protocol [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 24-30. |
[3] | Gaoteng YUAN,Yihui LIU,Wei HUANG,Bing HU. MR image classification and recognition model of breast cancer based onGabor feature [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 15-23. |
[4] | Jiangli DUAN,Xin HU. Semantic relation recognition for natural language question answering [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 1-7. |
[5] | Yunyang YAN,Chenxi DU,Yian LIU,Shangbing GAO. Fire detection based on lightweight convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 100-107. |
[6] | Shengnan ZHANG,Lei WANG,Chunhong CHANG,Benli HAO. Image denoising based on 3D shearlet transform and BM4D [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 83-90. |
[7] | Longmao HU,Xuegang HU. Identification of the same product feature based on multi-dimension similarity and sentiment word expansion [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 50-59. |
[8] | Yanping CHEN,Li FENG,Yongbin QIN,Ruizhang HUANG. A syntactic element recognition method based on deep neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 44-49. |
[9] | Wei YAN,Damin ZHANG,Huijuan ZHANG,Ziyun XI,Zhongyun CHEN. Improved bird swarm algorithms based on mixed decision making [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 34-43. |
[10] | Shiqi SONG,Yan PIAO,Zexin JIANG. Vehicle classification and tracking for complex scenes based on improved YOLOv3 [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 27-33. |
[11] | Ningning CHEN,Jianwei ZHAO,Zhenghua ZHOU. Visual tracking algorithm based on verifying networks [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 17-26. |
[12] | Yuenan ZHAO,Guiyou CHEN,Chen SUN,Ning LU,Liwei LIAO. Risk assessment method based on spatial hidden danger distribution and motion intention analysis [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 28-34. |
[13] | Jialin SU,Yuanzhuo WANG,Xiaolong JIN,Xueqi CHENG. Entity alignment method based on adaptive attribute selection [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 14-20. |
[14] | Guoyong CAI,Qiang LIN,Kaiqi REN. Cross-domain text sentiment classification based on domain-adversarialnetwork and BERT [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 1-7,20. |
[15] | Yuanxi YAO. Analysis of wind power convergence trend quantitation based on sub-scene reconstruction [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 86-92. |
|