1 |
TAN S, CHENG X, WANG Y, et al. Adapting naive bayes to domain adaptation for sentiment analysis[C]//European Conference on Information Retrieval. Berlin, Germany: Springer, 2009: 337-349.
|
2 |
PAN S J, NI X, SUN J, et al. Cross-domain sentiment classification via spectral feature alignment[C]//19thInternational Conference on World Wide Web. Raleigh, North Carolina, USA: ACM, 2010: 751-760.
|
3 |
GLOROT X, BORDES A, BENGIO Y, et al. Domain adaptation for large-scale sentiment classification: a deep learning approach[C]//28th International Conference on Machine Learning. Bellevue, Washington, USA: Omnipress, 2011: 513-520.
|
4 |
CHEN M, XU Z, SHA F, et al. Marginalized Denoising Autoencoders for Domain Adaptation[C]//29th International Conference on Machine Learning. Edinburgh, Scotland, UK: [s.n.], 2012: 1627-1634.
|
5 |
GANIN Y , USTINOVA E , AJAKAN H , et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17 (1): 1- 35.
|
6 |
AJAKAN H , GERMAIN P , LAROCHELLE H , et al. Domain-Adversarial Neural Networks[J]. Statistics, 2014, (1050): 1- 8.
|
7 |
LI Z, ZHANG Y, WEI Y, et al. End-to-end adversarial memory network for cross-domain sentiment classification[C]// 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: [s.n.], 2017: 2237-2243.
|
8 |
LI Z, WEI Y, ZHANG Y, et al. Hierarchical attention transfer network for cross-domain sentiment classification[C]//32th AAAI Conference on Artificial Intelligence. Hilton New Orleans Riverside, USA: AAAI, 2018: 5852-5859.
|
9 |
BLITZER J, DREDZE M, PEREORA F, et al. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification[C]//Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Prague, Czech Republic: Association for Computational Linguistics, 2007: 440-447.
|
10 |
GOODFELLOW I J, POUGETABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems. Montreal, Canada: [s.n.], 2014: 2672-2680.
|
11 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E, et al. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, USA: [s.n.], 2012: 1106-1114.
|
12 |
KARPATHY A, TODERICI G. Large-scale video classification with convolutional neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, USA: IEEE Xplore, 2014: 1725-1732.
|
13 |
KIM Y. Convolutional neural networks for sentence classification[C]//Conference on empirical methods in natural language processing. Doha, Qatar: [S.n.], 2014: 1746-1751.
|
14 |
WEI X , LIN H , YU Y , et al. Low-resource cross-domain product review sentiment classification based on a CNN with an auxiliary large-scale corpus[J]. Algorithms, 2017, 10 (81): 1- 15.
|
15 |
WU F, HUANG Y. Sentiment domain adaptation with multiple sources[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. Berlin, Germany: Association for Computational Linguistics, 2016: 301-310.
|
16 |
DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv: Computation and Language, 2018, 23(2): 3-19.
|
17 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need[C]//Advances in neural information processing systems. Long Beach, USA: [s.n.], 2017: 5998-6008.
|
18 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE Xplore, 2016: 770-778.
|