Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (3): 1-7.doi: 10.6040/j.issn.1672-3961.0.2019.417
• Machine Learning & Data Mining • Next Articles
CLC Number:
1 | ZHANG J, HUA Y, QI G, et al. Semantic parsing for multiple-relation Chinese question answering[C]//Proc of the China Conf on Knowledge Graph and Semantic Computing (CCKS). Tianjin, China: CEUR-WS, 2018: 101-106. |
2 | LI Y, MIAO Q, YIN C, et al. A joint model of entity linking and predicate recognition for knowledge base question answering[C]// Proc of the China Conf on Knowledge Graph and Semantic Computing (CCKS). Tianjin, China: CEUR-WS, 2018: 95-100. |
3 | SUN Z, SONG L, YU J. A QA search algorithm based on the fusion integration of text similarity and graph computation[C]//Proc of the China Conf on Knowledge Graph and Semantic Computing (CCKS). Tianjin, China: CEUR-WS, 2018: 89-94. |
4 | NI H, LIN L, XU G. A relateness-based ranking method for knowledge-based question answering[C]//Proc of the Seventh CCF Int Conf on Natural Language Processing and Chinese Computing (NLPCC). Huhehot, China: Springer, 2018: 393-400. |
5 | LAI Y, JIA Y, LIN Y, et al. A Chinese question answering system for single-relation factoid questions[C]//Proc of the Sixth CCF Int Conf on Natural Language Processing and Chinese Computing (NLPCC). Dalian, China: Springer, 2017: 124-135. |
6 | LAI Y, LIN Y, CHEN J, et al. Open domain question answering system based on knowledge base[C]//Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 722-733. |
7 | LEI K, DENG Y, ZHANG B, et al. Open domain question answering with character-level deep learning models[C]//Proc of the 10th Int Symposium on Computational Intelligence and Design (ISCID). Hangzhou, China: IEEE, 2017: 30-33. |
8 | SHEN C , HUANG T , LIANG X , et al. Chinese knowledge base question answering by attention-based multi-granularity model[J]. Information, 2018, 9 (4): 1- 20. |
9 | YANG F, GAN L, LI A, et al. Combining deep learning with information retrieval for question answering[C]//Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 917-925. |
10 | XIE Z, ZENG Z, ZHOU G, et al. Knowledge base question answering based on deep learning models[C]// Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 300-311. |
11 | WANG L, ZHANG Y, LIU T. A deep learning approach for question answering over knowledge base[C]// Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 885-892. |
12 | PICHUAN C A, HUIHSIN T B, DAN J A, et al. Discriminative reordering with chinese grammatical relations features[C]//Proc of the Third Workshop on Syntax and Structure in Statistical Translation. Pennsylvania, USA: Association for Computational Linguistics, 2009: 51-59. |
13 | DE MARNEFFE M C, DOZAT T, SILVEIRA N, et al. Universal Stanford dependencies: A cross-linguistic typology[C]// Proc of the International Conference on Language Resources and Evaluation (LREC). Reykjavik, Iceland: European Language Resources Association, 2014: 4585-4592. |
14 | YAHYA M, BERBERICH K, ELBASSUONI S, et al. Deep answers for naturally asked questions on the web of data[C]//Proc of the 21st Int Conf on World Wide Web(WWW). Lyon, France: ACM, 2012: 445-449. |
15 | YAHYA M, BERBERICH K, ELBASSUONI S, et al. Robust question answering over the web of linked data[C]//Proc of the 22nd ACM Int Conf on Information & Knowledge Management (CIKM). New York, USA: Association for Computing Machinery, 2013: 1107-1116. |
16 | YAHYA M, BERBERICH K, ELBASSUONI S, et al. Natural language questions for the web of data[C]//Proc of the 2012 Joint Conf on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island, Korea: Association for Computational Linguistics, 2012: 379-390. |
17 | YAHYA M. Question answering and query processing for extended knowledge graphs[D]. Saarland, German: Saarland University, 2016. |
18 | PRADEL C, PEYET G, HAEMMERLÉ O, et al. SWIP at QALD-3: Results, criticisms and lesson learned[C]// Proc of the 3rd Open Challenge on Question Answering over Linked Data (QALD). Valencia, Spain: CEUR-WS, 2013: 1-13. |
19 | PRADEL C, HAEMMERLÉ O, HERNANDEZ N. Natural language query translation into SPARQL using patterns[C]//Proc of the Fourth Int Workshop on Consuming Linked Data. Sydney, Australia: CEUR-WS, 2013: 1-12. |
20 | PRADEL C, HAEMMERLÉ O, HERNANDEZ N. SWIP: a natural language to SPARQL interface implemented with SPARQL[C]//Proc of the Int Conf on Conceptual Structures. Işi, Romania: Springer, 2014: 260-274. |
21 | XU K, FENG Y, HUANG S, et al. Question answering via phrasal semantic parsing[C]//Proc of the Int Conf of the Cross-Language Evaluation Forum for European Languages. Toulouse, France: Springer, 2015: 414-426. |
22 | XU K, ZHANG S, FENG Y, et al. Answering natural language questions via phrasal semantic parsing[C]//Proc of the Natural Language Processing and Chinese Computing (NLPCC). Shenzhen, China: Springer, 2014: 333-344. |
23 | HAKIMOV S, TUNC H, AKIMALIEV M, et al. Semantic question answering system over linked data using relational patterns[C]// Proc of the Joint EDBT/ICDT 2013 Workshops. Genoa, Italy: ACM, 2013: 83-88. |
24 | ZOU L, HUANG R, WANG H, et al. Natural language question answering over RDF: a graph data driven approach[C]//Proc of the 2014 ACM SIGMOD Int Conf on Management of Data. Utah, USA: ACM, 2014: 313-324. |
25 |
LIU J , LI W , LUO L , et al. Linked open data query based on natural language[J]. Chinese Journal of Electronics, 2017, 26 (2): 230- 235.
doi: 10.1049/cje.2016.11.003 |
26 | FINKEL J R, GRENAGER T, MANNING C. Incorporating non-local information into information extraction systems by gibbs sampling[C]//Proc of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL). Michigan, USA: Association for Computational Linguistics, 2005: 363-370. |
[1] | Jialin SU,Yuanzhuo WANG,Xiaolong JIN,Xueqi CHENG. Entity alignment method based on adaptive attribute selection [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 14-20. |
|