山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (6): 63-78.doi: 10.6040/j.issn.1672-3961.0.2022.231
Yiming ZHANG1(),Yunpeng LI1,Jing LI1,Junyu CONG2
摘要:
对近年来提出的多场耦合数值方法展开梳理与总结,从简单的热-力两场弱耦合到复杂的热-水-气-化学多场强耦合,从连续体的多场耦合作用到连续-非连续体的多场耦合计算。按照场数量增多、耦合作用增强、连续到非连续的逻辑逐渐深入讨论。本研究对多场耦合数值计算今后的发展作了展望。
中图分类号:
1 | 黎明镜. 热力耦合作用下深井巷道围岩变形规律研究[D]. 淮南: 安徽理工大学, 2010. |
LI Mingjing. Study of the deformation laws of rock roadways in deep mine bases on thermo-mechanical coupling[D]. Huainan: Anhui University of Science and Technology, 2010. | |
2 |
苗艳春, 张玉, 雷闯, 等. 热力耦合途径下再生保温混凝土的细观力学性能[J]. 郑州大学学报(工学版), 2021, 42 (5): 79- 85.
doi: 10.13705/j.issn.1671-6833.2021.05.003 |
MIAO Yanchun , ZHANG Yu , LEI Chuang , et al. Meso-scale response of recycled aggregate thermal insulation concrete based oncoupled thermo-mechanical modeling[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42 (5): 79- 85.
doi: 10.13705/j.issn.1671-6833.2021.05.003 |
|
3 | NGUYENTD , PHAM D T , VU M N . Thermo-mechanically-induced thermal conductivity change and its effect on the behaviour of concrete[J]. Construction and Building Materials, 2019, 198 (20): 98- 105. |
4 | OTERKUS S, FOX J, MADENCI E. Simulation of electro-migration through peridynamics[C]//2013 IEEE 63rd Electronic Components and Technology Conference. St. Louis, USA: IEEE, 2013: 1488-1493. |
5 | OTERKUS S, MADENCI E. Fully coupled thermomechanical analysis of fiber reinforced composites using peridynamics[C]// 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference-SciTech Forum and Exposition. National Harbor, MD, USA: AIAA, 2014: 13-17. |
6 | 吴泽艳, 郑保敬, 叶永, 等. 非线性热传导方程MLPG/RBF-FD无网格数值模拟[J]. 工程热物理学报, 2022, 43 (1): 164- 172. |
WU Zeyan , ZHENG Baojing , YE Yong , et al. Numerical simulation for the nonlinear heat conduction equations based on MLPG/RBF-FDmeshless method[J]. Journalof Engineering Thermophysics, 2022, 43 (1): 164- 172. | |
7 |
GAWIND D , KONIORCZYK M , PESAVENTO F . Modelling of hydro-thermo-chemo-mechanical phenomena in building materials[J]. Bulletin of the Polish Academy of Sciences, Technical Sciences, 2013, 61 (1): 51- 63.
doi: 10.2478/bpasts-2013-0004 |
8 |
GAWIND D , PESAVENTO F , BA S . What physical phenomena can be neglected when modelling concrete at high temperature? a comparative study: Part 2: comparison between model[J]. International Journal of Solids and Structures, 2011, 48, 1945- 1961.
doi: 10.1016/j.ijsolstr.2011.03.003 |
9 | 科曼, 潘金贵. 算法导论[M]. 北京: 机械工业出版社, 2006. |
KE Man , PAN Jingui . Introduction to algorithms[M]. Beijing: China Machine Press, 2006. | |
10 |
MATTHIAS B , EFTEKHARIA , SCHEIDEGGER S , et al. Large-scale sparse inverse covariance matrix estimation[J]. SIAM Journal on Scientific Computing, 2019, 41 (1): 380- 401.
doi: 10.1137/17M1147615 |
11 | CHRISTOPHER J G, HENRY G W. Notes on computational fluid dynamics: general principles[M]. CFD Direct Ltd. : 2022. |
12 | PATRICK A , LAIN D , JEAN-YVES L'E . Multifrontal parallel distributed symmetric and unsymmetric solvers[J]. Computer Methods in Applied Mechanics & Engineering, 2000, 184 (2/3/4): 501- 520. |
13 |
PATRICK A , LAIN D , JEAN-YVES L'E , et al. Impact of the Implementation of MPI point-to-point communications on the performance of two general sparse solvers[J]. Parallel Computing, 2003, 29 (7): 833- 849.
doi: 10.1016/S0167-8191(03)00067-X |
14 |
MILLY P C D . Moisture and heat transport inhysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model[J]. Water Resources Research, 1982, 18 (3): 489- 498.
doi: 10.1029/WR018i003p00489 |
15 |
MILLY P C D . A linear analysis of thermal effects on evaporation from soil[J]. Water Resources Research, 1984, 20 (8): 1075- 1085.
doi: 10.1029/WR020i008p01075 |
16 | SAITO H , SIMUNEK J , BINAYAK P M . Numerical analysis of coupled water, vapor, and heat transport in the vadose zone[J]. Vadose Zone Journal, 2006, (5): 784- 800. |
17 | 曾亦键. 浅层包气带水-汽-热耦合运移规律及其数值模拟研究[D]. 北京: 中国地质大学, 2012. |
ZENG Yijian. Coupled water-vapor-heat transport in the unsaturated soil and its numerical simulation[D]. Beijing: China University of Geosciences, 2012. | |
18 | 姜建梅. 基于滨海平原区浅层地下水对土壤水热运移规律的影响研究[D]. 天津: 天津大学, 2015. |
JIANG Jianmei. The effect of shallow groundwater on coupled soil water vapor and heat transport in coastal plain[D]. Tianjin: Tianjin University, 2015. | |
19 | 夏琼, 王旭. 土水特征参数对蒸发面发展影响规律数值模拟研究[J]. 兰州交通大学学报, 2020, 39 (1): 20- 26. |
XIA Qiong , WANG Xu . Numerical simulation study on the influence of soil-water characteristic parameter on vaporization plane developing[J]. Journal of Lanzhou Jiaotong University, 2020, 39 (1): 20- 26. | |
20 | 洪勃. 黄土水气热传导特性及其热湿运移规律试验研究[D]. 西安: 长安大学, 2020. |
HONG Bo. Research on water, air and heat conduction characteristics and its heat-moisture transfer of loess[D]. Xi'an: Chang'an University, 2020. | |
21 | 黄家晟, 王路君, 刘燕晶, 等. 含气土地基热水气力耦合时变行为分析[J]. 岩土力学, 2021, 42 (9): 2507- 2517. |
HUANG Jiasheng , WANG Lujun , LIU Yanjing , et al. Time-dependent behaviour of thermal-hydro-mechanical coupling of gassy soils[J]. Rock and Soil Mechanics, 2021, 42 (9): 2507- 2517. | |
22 |
LIU L , JI H , ELSWORTH D , et al. Dual-damage constitutive model to define thermal damage in rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126, 104185.
doi: 10.1016/j.ijrmms.2019.104185 |
23 |
谭启, 骆循, 李仕雄, 等. 岩石热破裂研究进展评述[J]. 露天采矿技术, 2006, (6): 16- 19.
doi: 10.13235/j.cnki.ltcm.2006.06.007 |
TAN Qi , LUO Xun , LI Shixiong , et al. Comments on rock thermal fracturing study progress[J]. Opencast Mining Technology, 2006, (6): 16- 19.
doi: 10.13235/j.cnki.ltcm.2006.06.007 |
|
24 | 唐世斌, 唐春安, 梁正召, 等. 热冲击作用下的陶瓷材料破裂过程数值分析[J]. 复合材料学报, 2008, (2): 115- 122. |
TANG Shibin , TANG Chun'an , LIANG Zhengzhao , et al. Failure process analysis of ceramic materials subjected to thermal shock[J]. Acta Materiae Compositae Sinica, 2008, (2): 115- 122. | |
25 | 李连崇, 唐春安, 唐世斌, 等. 含损伤演化的TM耦合数值模型及其应用研究[J]. 力学学报, 2006, (4): 505- 513. |
LI Lianchong , TANG Chun'an , TANG Shibin , et al. The damage coupled thermo-mechanical(TM) model for rock failure process and applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, (4): 505- 513. | |
26 | 罗江. 温度应力诱发的岩石裂纹扩展研究[D]. 大连: 大连理工大学, 2018. |
LUO Jiang. Study on rock crack propagation induced by temperature stress[D]. Dalian: Dalian University of Technology, 2018. | |
27 | LI Jia , JIANG Chiping . Direct numerical simulations on crack formation in ceramic materials under thermal shock by using a non-local fracture model[J]. Journal of the European Ceramic Society, 2013, 33 (13): 2677- 2687. |
28 | 严成增. FDEM-TM方法模拟岩石热破裂[J]. 岩土工程学报, 2018, 40 (7): 1198- 1204. |
YAN Chengzeng . Simulating thermal cracking of rock using FDEM-TM method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (7): 1198- 1204. | |
29 | 刘学伟, 刘泉声, 卢超波, 等. 温度-应力耦合作用下岩体裂隙扩展的数值流形方法研究[J]. 岩石力学与工程学报, 2014, 33 (7): 1432- 1441. |
LIU Xuewei , LIU Quansheng , LU Chaobo , et al. A numerical manifold method for fracture propagation of rock mass considering thermo-mechanical coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (7): 1432- 1441. | |
30 | 张英, 李鹏, 郭奇峰, 等. 水力耦合裂隙岩体变形破坏机制研究进展[J]. 哈尔滨工业大学学报, 2020, 52 (6): 21- 41. |
ZHANG Ying , LI Peng , GUO Qifeng , et al. Research progress of deformation and failure mechanism in fractured rock mass under hydromechanical coupling[J]. Journal of Harbin Institute of Technology, 2020, 52 (6): 21- 41. | |
31 | 李根, 唐春安, 李连崇. 水岩耦合变形破坏过程及机理研究进展[J]. 力学进展, 2012, 42 (5): 593- 619. |
LI Gen , TANG Chun'an , LI Lianchong . Advances in rock deformation and failureprocess under water-rock coupling[J]. Advances in Mechanics, 2012, 42 (5): 593- 619. | |
32 |
GUO Q , PAN J , CAI M , et al. Investigating the effect of rock bridge on the stability of locked section slopes by the direct shear test and acoustic emission technique[J]. Sensors, 2020, 20 (3): 638.
doi: 10.3390/s20030638 |
33 |
OTTO S , TILL P , HARTMUT K . Development of damage and permeability in deforming rock salt[J]. Engineering Geology, 2001, 61, 163.
doi: 10.1016/S0013-7952(01)00051-5 |
34 |
SOULEY M , HOMAND F , PEPA S , et al. Damage-induced permeability changes in granite: a case example at the URL in Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38, 297.
doi: 10.1016/S1365-1609(01)00002-8 |
35 | MARTIN C D , CHANDLER N A . The progressive fracture of lac du bonnet granite[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1994, 31 (6): 643. |
36 | 张玉军. 遍有节理岩体的双重孔隙-裂隙介质热-水-应力耦合模型及有限元分析[J]. 岩石力学与工程学报, 2009, 28 (5): 947- 955. |
ZHANG Yujun . Coupled thermo-hydro-mechanical model and finiteelement analyses ofdual-porosity fractured medium forubiquitous-joint rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (5): 947- 955. | |
37 |
陈卫忠, 王鲁瑀, 谭贤君, 等. 裂隙岩体地下工程稳定性研究发展趋势[J]. 岩石力学与工程学报, 2021, 40 (10): 1945- 1961.
doi: 10.13722/j.cnki.jrme.2020.1074 |
CHEN Weizhong , WANG Luyu , TAN Xianjun , et al. State-of-the-art and development tendency of the underground engineeringstability of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (10): 1945- 1961.
doi: 10.13722/j.cnki.jrme.2020.1074 |
|
38 | 王媛, 速宝玉, 徐志英. 裂隙岩体渗流模型综述[J]. 水科学进展, 1996, (3): 93- 99. |
WANG Yuan , SU Baoyu , XU Zhiying . Comment on the models of seepage flowin fractured rock masses[J]. Advances in Water Science, 1996, (3): 93- 99. | |
39 | 刘仲秋, 章青. 岩体中饱和渗流应力耦合模型研究进展[J]. 力学进展, 2008, (5): 585- 600. |
LIU Zhongqiu , ZHANG Qing . A review on the state of art of the saturated seepage-stress coupling models in rock mass[J]. Advances in Mechanics, 2008, (5): 585- 600. | |
40 | 何冠鸿. 岩石单裂隙渗流粗糙起伏角修正公式研究[D]. 北京: 清华大学, 2014. |
HE Guanhong. Study on the modified equation of single fracture seepage with roughness angle[D]. Beijing: Tsinghua University, 2014. | |
41 | ANDREW P B , ROBERT G J . Cohesive zone finite element-based modeling of hydraulic fractures[J]. Acta Mechanica SolidaSinica, 2009, 22 (5): 443- 452. |
42 | HU Qianting, LIU Jichuan, LI Quangui, et al. Numerical simulation of seepage induced stress field in segmentedhydraulic fracturing of coal seam[J/OL]. Journal of Mining & Safety Engineering. [2022-07-24]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=KSYL20220217000&DbName=DKFX2022. |
43 | 张瑛堃, 陈尚斌, 李学元, 等. 页岩气储层水力压裂扩展有限元模拟方法及应用[J]. 天然气地球科学, 2021, 32 (1): 109- 118. |
ZHANG Yingkun , CHEN Shangbin , LI Xueyuan , et al. Hydraulic fracturing simulation technology of shale gas reservoir and application of extened finite element method[J]. Natural Gas Geoscience, 2021, 32 (1): 109- 118. | |
44 | 彪仿俊, 刘合, 张士诚, 等. 水力压裂水平裂缝影响参数的数值模拟研究[J]. 工程力学, 2011, 28 (10): 228- 235. |
BIAO Fangjun , LIU He , ZHANG Shicheng , et al. A numerical study of parameter influences on horizontalhydraulic fracture[J]. Engineering Mechanics, 2011, 28 (10): 228- 235. | |
45 | 王利, 张新生, 田林, 等. 基于孔隙弹性耦合的水力压裂数值模拟研究[J]. 固体力学学报, 2017, 38 (6): 558- 569. |
WANG Li , ZHANG Xinsheng , TIAN Lin , et al. The coupling method and numerical simulation of hydraulic fracturing based on poroelasticity[J]. Chinese Journal of Solid Mechanics, 2017, 38 (6): 558- 569. | |
46 | ELIZAVETA G , ANTHONY P . Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 474- 502. |
47 | GORDELIY E , ANTHONY P . Coupling schemes for modeling hydraulic fracture propagation using the XFEM[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253 (1): 305- 322. |
48 | BAO Jinqing , EBRAHIM F , SAMUEL A . A unified finite element method for the simulation of hydraulic fracturing with and without fluid lag[J]. Engineering Fracture Mechanics, 2016, 164- 178. |
49 | 师文豪, 杨天鸿, 于庆磊, 等. 层状边坡各向异性岩体渗流-应力耦合模型及工程应用[J]. 岩土力学, 2015, 36 (8): 2352- 2360. |
SHI Wenhao , YANG Tianhong , YU Qinglei , et al. Seepage-stress coupling model of anisotropic rock massof stratified slope and its engineering application[J]. Rock and Soil Mechanics, 2015, 36 (8): 2352- 2360. | |
50 | 李廷春, 李术才, 陈卫忠, 等. 厦门海底隧道的流固耦合分析[J]. 岩土工程学报, 2004, 26 (3): 397. |
LI Tingchun , LI Shucai , CHEN Weizhong , et al. Coupled fluid-mechanical analysis of Xiamen subsea tunnel[J]. Chinese Journal of Geotechnical Engineering, 2004, 26 (3): 397. | |
51 | 景国勋, 王远声, 周霏, 等. 基于RFPA2D的不同角度穿层钻孔水力压裂技术模拟研究[J]. 煤矿开采, 2018, 23 (5): 103- 107. |
JING Guoxun , WANG Yuansheng , ZHOU Fei , et al. Numerical simulation study of water fracturing with different angle through beds holes based on RFPA2D[J]. Journal of Mining and Strata Control Engineering, 2018, 23 (5): 103- 107. | |
52 | HIROYUKI S , SUMIHIKO M , TSUYOSHI I . The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48, 712- 727. |
53 | CARTER B J , DESROCHES J , INGRAFFEA A R . Simulating fully 3d hydraulic fracturing[J]. Modeling in Geomechanics, 2000, 525-557 |
54 | 高慧, 冯春, 朱心广, 等. 基于连续-非连续元三维煤层气压裂开采分析[J]. 山东大学学报(工学版), 2021, 51 (6): 119- 128. |
GAO Hui , FENG Chun , ZHU Xinguang , et al. Three-dimensional hydraulic fracturing analysis of coal bed methane based on continuous-discontinous element method[J]. Journal of Shandong University (Engineering Science), 2021, 51 (6): 119- 128. | |
55 | GHASSAN A , ALAIN T , ABDALLAHS , et al. Thermal convection of fluid in fractured media[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1995, 32 (5): 481- 490. |
56 | RD Hart , CMS John . Formulation of a fully-coupled Thermal-Mechanical-Fluid Model for non-linear geologic systems[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1986, 23 (3): 213- 224. |
57 | 张玉军. 核废料处置概念库近场热-水-应力耦合二维有限元模拟[J]. 岩土工程学报, 2006, (9): 1053- 1058. |
ZHANG Yujun . 2D FEM simulation for coupled thermo-hydro-mechanical processes of near field in conceptual nuclear waste repository[J]. Chinese Journal of Geotechnical Engineering, 2006, (9): 1053- 1058. | |
58 | 朱志武, 宁建国, 马巍. 土体冻融过程中水、热、力三场耦合本构问题及数值分析[J]. 工程力学, 2007, (5): 138- 144. |
ZHU Zhiwu , NING Jianguo , MA Wei . Constitutive model and numerical analysis for thecoupled problem of water, temperature and stress fieldsin the process of soil freeze-thaw[J]. Engineering Mechanics, 2007, (5): 138- 144. | |
59 | 张玉军. 模拟冻-融过程的热-水-应力耦合模型及数值分析[J]. 固体力学学报, 2009, 30 (4): 409- 415. |
ZHANG Yujun . Coupled thermo-hydro-mechanical model and numerical analysis for simulation of freezing-thawing process[J]. Chinese Journal of Solid Mechanics, 2009, 30 (4): 409- 415. | |
60 | NEAUPANE K M , YAMABE T , YOSHINAKA R . Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36 (5): 563- 580. |
61 | 王海静, 薛世峰, 仝兴华, 等. 热采环境泥岩层应力演化规律及破坏机理研究[J]. 西南石油大学学报(自然科学版), 2017, 39 (4): 119- 126. |
WANG Haijing , XUE Shifeng , TONG Xinghua , et al. Study on stress evolution and failure mechanism of mudstone layer in thermal recovery environment[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39 (4): 119- 126. | |
62 | RUTQVIST J . Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations[J]. Computers and Geosciences, 2011, 37 (6): 739- 750. |
63 | LEI Hongwu , XU Tianfu , JIN Guangrong . TOUGH2Biot: a simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: application to CO2 geological storage and geothermal development[J]. Computers & Geosciences, 2015, 77, 8- 19. |
64 | ZHAO Y , FENG Z , FENG Z , et al. THM (thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000-7000 m[J]. Energy, 2015, 82, 193- 205. |
65 | 孙致学, 姜传胤, 张凯, 等. 基于离散裂缝模型的CO2增强型地热系统THM耦合数值模拟[J]. 中国石油大学学报(自然科学版), 2020, 44 (6): 79- 87. |
SUN Zhixue , JIANG Chuanyin , ZHANG Kai , et al. Numerical simulation for heat extraction of CO2-EGS with thermal-hydraulic-mechanical coupling method based on discrete fracture models[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44 (6): 79- 87. | |
66 | 郭志光, 白冰. 饱和度对多孔介质中热-水-力耦合响应的影响[J]. 岩土工程学报, 2018, 40 (6): 1021- 1028. |
GUO Zhiguang , BAI Bing . Effect of saturation on thermo-hydro-mechanical coupled responses inporous media[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (6): 1021- 1028. | |
67 | TOMAC I, GUTIERREZ M. Micro-mechanics of hydro-thermo-mechanical fracture propagation in granite[C]//Proceeding of the 48th USA Rock Mechanics/Geomechanics Symposium, Minneapolis, USA: [s. n], 2014: 7148. |
68 | 张伟, 曲占庆, 郭天魁, 等. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40 (5): 2001- 2008. |
ZHANG Wei , QU Zhanqing , GUO Tiankui , et al. Numerical simulation of hydraulic fracturing in hot dry rocksunder the influence of thermal stress[J]. Rock and Soil Mechanics, 2019, 40 (5): 2001- 2008. | |
69 | 张一鸣. 早龄期混凝土的多物理场耦合数值分析[D]. 上海: 同济大学, 2009. |
ZHANG Yiming. Multi-physical fields coupled numerical analysis of early age concrete[D]. Shanghai: Tongji University, 2009. | |
70 | 杜明月, 田野, 金南国, 等. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49 (8): 1410- 1416. |
DU Yueming , TIAN Ye , JIN Nanguo , et al. Coupling of hygro-thermal field in early-age concrete based on cement hydration[J]. Journal of Zhejiang University(Engineering Science), 2015, 49 (8): 1410- 1416. | |
71 | LACKNER R , MANG H . Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures[J]. Cement and Concrete Composites, 2004, 26 (5): 551- 562. |
72 | 金贤玉, 田野, 金南国. 混凝土早龄期性能与裂缝控制[J]. 建筑结构学报, 2010, 31 (6): 204- 212. |
JIN Xianyu , TIAN Ye , JIN Nanguo . Early age properties and cracking control of concrete[J]. Journal of Building Structures, 2010, 31 (6): 204- 212. | |
73 | 赵志宏, 井兰如, 宋二祥. 裂隙岩体中力学-渗流-传输耦合离散元模拟[J]. 地下空间与工程学报, 2014, 10 (5): 1023- 1029. |
ZHAO Zhihong , JING Lanru , SONG Erxiang . Discrete element modeling of coupled mechanical-flow-transport processes in fractured rocks[J]. Chinese Journal of Underground Space and Engineering, 2014, 10 (5): 1023- 1029. | |
74 | ZHAO Zhihong , JING Lanru , IVARS N , et al. Numerical modeling of stress effects on solute transport in fractured rocks[J]. Computers & Geotechnics, 2011, 38 (2): 113- 126. |
75 | ZHAO Zhihong , JING Lanru , NERETNIEK S , et al. A new numerical method of considering local longitudinal dispersion in single fractures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38 (1): 20- 36. |
76 | 吴建营, 陈万昕, 黄羽立. 基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测[J]. 力学学报, 2021, 53 (5): 1367- 1382. |
WU Jianying , CHEN Wanxin , HUANG Yuli . Computational modeling of shrinkage induced crackingin early-age concrete based on theunified phase-field theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (5): 1367- 1382. | |
77 | SU Huaizhi , HU Jiang , LI Hao . Multi-scale performance simulation and effect analysis for hydraulic concrete submitted to leaching and frost[J]. Engineering With Computers, 2018, 34, 821- 842. |
78 | 应伟超. 混凝土早期受冻损伤的数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
YING Weichao. Numerical simulation research on the frost damage of early-age concrete[D]. Haerbin: Harbin Institute of Technology, 2021. | |
79 | 王立成, 吴迪, 鲍玖文, 等. 早龄期混凝土温度场分布的细观数值仿真分析[J]. 水利学报, 2017, 48 (9): 1015- 1022. |
WANG Licheng , WU Di , BAO Jiuwen , et al. Mesoscale numerical simulation analysis for temperature distribution in early-age concrete[J]. Journal of Hydraulic Engineering, 2017, 48 (9): 1015- 1022. | |
80 | 王玉林, 谢康和, 王坤, 等. 非均匀表皮效应对各向异性稳态承压井流的影响[J]. 岩土力学, 2011, 32 (7): 2133- 2138. |
WANG Yulin , XIE Kanghe , WANG Kun , et al. Influence of nonuniform skin effect on steady radialflow in anisotropic confined aquifer[J]. Rock and Soil Mechanics, 2011, 32 (7): 2133- 2138. | |
81 | 尚松浩, 雷志栋, 杨诗秀. 冻结条件下土壤水热耦合迁移数值模拟的改进[J]. 清华大学学报(自然科学版), 1997, 37 (8): 64- 66. |
SHANG Songhao , LEI Zhidong , YANG Shixiu . Numerical simulation improvementof coupled moisture and heat transfer during soil freezing[J]. Journal of Tsinghua University (Sci & Tech), 1997, 37 (8): 64- 66. | |
82 | 高效伟, 曾文浩, 崔苗. 等参管单元及其在热传导问题边界元法中的应用[J]. 计算力学学报, 2016, 33 (3): 328- 334. |
GAO Xiaowei , ZENG Wenhao , CUI Miao . Isoparametric tube elements and their application in heat conduction BEM analysis[J]. Chinese Journal of Computational Mechanics, 2016, 33 (3): 328- 334. | |
83 | 刘俊俏, 苗福生, 李星. 二维各向异性功能梯度材料热传导的边界元分析[J]. 西安交通大学学报, 2013, 47 (5): 77- 81. |
LIU Junqiao , MIAO Fusheng , LI Xing . Boundary element analysis of the two-dimensional heat conduction equation for anisotropic functional graded materials[J]. Journal of Xi'an Jiaotong University, 2013, 47 (5): 77- 81. | |
84 | 夏光明. 瞬态渗流问题边界元法初步研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
XIA Guangming. Preliminary study on transient flow by BEM[D]. Haerbin: Harbin Institute of Technology, 2015. | |
85 | 余天堂, 万林林. 非均质材料热传导问题的扩展有限元法[J]. 计算力学学报, 2011, 28 (6): 884- 890. |
YU Tiantang , WAN Linlin . Extended finite element method for heat transfer problems in heterogeneous material[J]. Chinese Journal of Computational Mechanics, 2011, 28 (6): 884- 890. | |
86 | 何敏, 李宁, 高焕焕, 等. 带相变瞬态温度场问题的扩展有限元解析[J]. 冰川冻土, 2016, 38 (4): 1044- 1051. |
HE Min , LI Ning , GAO Huanhuan , et al. Extended finite element method analysis for the transient temperature field with phase change[J]. Journal of Glaciology and Geocryology, 2016, 38 (4): 1044- 1051. | |
87 | JU Y , LI Y , WANG Y , et al. Stress shadow effects andmicroseismic events during hydrofracturing of multiple vertical wells in tight reservoirs: a three-dimensional numerical model[J]. Journal of Natural Gas Science and Engineering, 2020, 84, 1- 20. |
88 | ZENG Wei , YANG Shengqi , TIAN Wenling , et al. Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code[J]. Journal of Central South University, 2018, 25 (6): 1367- 1385. |
89 | 蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43 (8): 1391- 1398. |
JIANG Mingjing , CHEN Yiru , LU Guowen . A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (8): 1391- 1398. | |
90 | 张政, 谢灼利. 流体-固体两相流的数值模拟[J]. 化工学报, 2001, (1): 1- 12. |
ZHANG Zheng , XIE Zhuoli . Numerical simulation of fluid-solid two-phase flows[J]. Journal of Chemical Industry and Engineering (China), 2001, (1): 1- 12. | |
91 | KAIDI S , OUAHSINE A , ROUAINIA M , et al. DDA in fluid-structure problems for the study of gravity dam failure[J]. Revue Européenne de Mécanique Numé-rique, 2010, 19 |
92 | 虞松, 朱维申, 张云鹏. 基于DDA方法一种流-固耦合模型的建立及裂隙体渗流场分析和应用[J]. 岩土力学, 2015, 36 (2): 555- 560. |
YU Song , ZHU Weishen , ZHANG Yunpeng . Coupled hydro-mechanical model based DDAmethod for seepage analysis of fractured rock mass and its application[J]. Rock and Soil Mechanics, 2015, 36 (2): 555- 560. | |
93 | 郑春梅. 基于DDA的裂隙岩体水力耦合研究[D]. 济南: 山东大学, 2010. |
ZHENG Chunmei. Study on hydro-mechanical coupling of fractured rock mass based on DDA[D]. Jinan: Shandong University, 2010. | |
94 | 孙玉杰, 邬爱清, 张宜虎, 等. 基于离散单元法的裂隙岩体渗流与应力耦合作用机制研究[J]. 长江科学院院报, 2009, 26 (10): 62- 66. |
SUN Yujie , WU Aiqing , ZHANG Yihu , et al. Three-dimensional seepage analysis of powerhouse dam section of xiaxia institute anti-regulation reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26 (10): 62- 66. | |
95 | 刘泉声, 吴月秀, 刘滨. 应力对裂隙岩体等效渗透系数影响的离散元分析[J]. 岩石力学与工程学报, 2011, 30 (1): 176- 183. |
LIU Quansheng , WU Yuexiu , LIU Bin . Discrete element analysis of effect of stress onequivalent permeability of fractured rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (1): 176- 183. | |
96 | 张玉军. 核废料地质处置概念库HM耦合和THM耦合过程的二维离散元分析与比较[J]. 工程力学, 2008, 25 (4): 218- 223. |
ZHANG Yujun . Analysis and comparison of coupled HM and THM processes by 2D distinct element method in a conceptual nuclear waste repository[J]. Engineering Mechanics, 2008, 25 (4): 218- 223. | |
97 | 魏怀鹏, 易大可, 李世海, 等. 基于连续介质模型的离散元方法中弹簧性质研究[J]. 岩石力学与工程学报, 2006, (6): 1159- 1169. |
WEI Huaipeng , YI Dake , LI Shihai , et al. Study on spring properties of continuum-based discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, (6): 1159- 1169. | |
98 | ZHU Xinguang , FENG Chun , CHENG Pengda , et al. A novel three-dimensional hydraulic fracturing model based on continuum-discontinuum element method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383 (6): 113887. |
99 | LI Shihai , TANG Dehong , WANG Jie . A two-scale contact model for collisions between blocks in CDEM[J]. Science China(Technological Sciences), 2015, 58 (9): 1596- 1603. |
[1] | 郑卫琴,许杰,孙杰,武科. 复合地层TBM隧道管片受力特征[J]. 山东大学学报 (工学版), 2022, 52(4): 210-213. |
[2] | 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79. |
[3] | 刘舫辰,石岩,李元鲁,王湛,杜文静,季万祥. 用于燃煤电厂的低温省煤器前烟道流动及磨损特性[J]. 山东大学学报 (工学版), 2022, 52(3): 100-108. |
[4] | 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92. |
[5] | 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41. |
[6] | 卢光兆,周博,徐锋,上官伟,王刚,张书博. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报 (工学版), 2021, 51(4): 61-70. |
[7] | 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51. |
[8] | 王春国. 硬岩隧道施工通风系统优化与抑尘效果评价[J]. 山东大学学报 (工学版), 2021, 51(3): 52-60. |
[9] | 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38. |
[10] | 苏思博,王国清,贾献卓,李志聪,黄志刚. 剪跨比对插槽式连接空心管墩抗震性能影响[J]. 山东大学学报 (工学版), 2021, 51(1): 39-45. |
[11] | 徐再根,刘正伟,刘文棚,周梦瑶,刘俊才,田利. 输电塔单双角钢过渡节点计算方法[J]. 山东大学学报 (工学版), 2021, 51(1): 87-93. |
[12] | 闫吉庆,王效嘉,田茂诚. 含不凝气蒸汽在锯齿形表面的凝结传热特性[J]. 山东大学学报 (工学版), 2020, 50(6): 129-134. |
[13] | 陈禹成,王朝阳,郭明,林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报 (工学版), 2020, 50(5): 33-43. |
[14] | 祁金胜,曹洪振,石岩,杜文静,王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69, 76. |
[15] | 曹洪振,祁金胜,袁宝强,杜文静,王湛. 偏心方圆节扩散管数值模拟[J]. 山东大学学报 (工学版), 2020, 50(5): 77-82. |
|