您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (6): 63-78.doi: 10.6040/j.issn.1672-3961.0.2022.231

• 土木工程 • 上一篇    下一篇

孔隙裂隙介质多场耦合数值计算进展

张一鸣1(),李赟鹏1,李婧1,丛俊余2   

  1. 1. 河北工业大学土木与交通学院, 天津 300401
    2. 北京极道成然科技有限公司, 北京 100085
  • 收稿日期:2022-07-15 出版日期:2022-12-20 发布日期:2022-12-23
  • 作者简介:张一鸣,1984年生,上海人,教授,博士生导师,中组部海外高层次引进人才(国家级),主要从事岩土工程防灾减灾、计算力学及先进计算方法方面的研究。解决了困扰学界27年的内嵌不连续单元方法采用静态对称模式产生的应力锁死问题。目前担任中国地震学会基础设施防灾减灾青年委员会、《隧道与地下工程灾害防治》青年编委会、《交通安全与环境》英文版青年编委会、《世界交通运输大会(WTC)》第二届学部委员会隧道工程学部隧道结构理论与设计方法学科深埋长大隧道工程的先进理念与设计技术委员会等委员、《力学与实践》青年编委。
    张一鸣(1984—),男,上海人,教授,博士生导师,主要研究方向为岩土工程、多物理场耦合问题。E-mail: yiming.zhang@hebut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52178324)

Development of numerical calculation for coupled multi-field problems in cracked/porous media

Yiming ZHANG1(),Yunpeng LI1,Jing LI1,Junyu CONG2   

  1. 1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
    2. Gdem Technology Beijing Company Limited, Beijing 100085, China
  • Received:2022-07-15 Online:2022-12-20 Published:2022-12-23

摘要:

对近年来提出的多场耦合数值方法展开梳理与总结,从简单的热-力两场弱耦合到复杂的热-水-气-化学多场强耦合,从连续体的多场耦合作用到连续-非连续体的多场耦合计算。按照场数量增多、耦合作用增强、连续到非连续的逻辑逐渐深入讨论。本研究对多场耦合数值计算今后的发展作了展望。

关键词: 多场耦合分析, 数值模拟, 压裂, 孔隙裂隙介质, 综述

Abstract:

Numerical methods of coupled multi-field problems proposed in recent years were reviewed and summarized, from the simple weakly coupled thermo-mechanical to the complicated strongly coupled thermos-hydro-chemo- mechanical problems, from the coupled problem of continuous solid to discontinuous solid. The work was presented in a smooth and progressive manner.This study made a prospect for the future development of multi-field coupling numerical calculation.

Key words: coupled multi-field analysis, numerical simulation, hydrolic fracture, fractured porous media, review

中图分类号: 

  • TU311.4

图1

热-力耦合机理"

图2

薄板中的热传导"

图3

水-气-热耦合机理"

图4

热-力耦合损伤过程示意图"

图5

岩石中颗粒之间相互挤压示意图"

图6

热-力耦合下圆盘开裂情况"

图7

水-力耦合机理"

图8

有限元解与解析解对比"

图9

水-力耦合过程分析"

图10

颗粒离散元裂缝扩展和流体渗透"

图11

岩体THM三场耦合机理"

图12

热水力耦合下水压对最大主应力的影响"

图13

热-水-化学-力耦合机理"

图14

不同时刻混凝土圆环收缩开裂相场应变云图"

表1

数值方法索引"

数值方法 文献
连续介质方法 FDM 煤层分段水力压裂渗流诱导应力场的数值模拟[42]
非均匀表皮效应对各向异性稳态承压井流的影响[80]
结条件下土壤水热耦合迁移数值模拟的改进[81]
FEM Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model[14]
A linear analysis of thermal effects on evaporation from soil[15]
基于孔隙弹性耦合的水力压裂数值模拟研究[45]
BEM 等参管单元及其在热传导问题边界元法中的应用[82]
二维各向异性功能梯度材料热传导的边界元分析[83]
瞬态渗流问题边界元法初步研究[84]
XFEM 非均质材料热传导问题的扩展有限元法[85]
带相变瞬态温度场问题的扩展有限元解析[86]
基于扩展有限元方法的裂隙岩体冻胀力理论与数值研究[87]
非连续介质方法 PFC The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution[52]
Numerical investigation on permeability evolution behavior of rock byan improved flow-coupling algorithm in particle flow code[88]
一种实用型深海能源土多场耦合离散元数值方法[89]
DEM 流体-固体两相流的数值模拟[90]
DDA DDA in fluid-structure problems for the study of gravity dam failure[91]
基于DDA方法一种流-固耦合模型的建立及裂隙体渗流场分析和应用[92]
基于DDA的裂隙岩体水力耦合研究[93]
UDEC 基于离散单元法的裂隙岩体渗流与应力耦合作用机制研究[94]
应力对裂隙岩体等效渗透系数影响的离散元分析[95]
核废料地质处置概念库HM耦合和THM耦合过程的二维离散元分析与比较[96]
连续/非连续混合方法 FEM/BEM Simulating fully 3D hydraulic fracturing. modeling in geomechanics[53]
Stress shadow effects andmicroseismic events during hydrofracturing of multiple vertical wells in tight reservoirs: a three-dimensional numerical model[87]
DEM/BEM 基于连续介质模型的离散元方法中弹簧性质研究[97]
CDEM 基于连续-非连续元三维煤层气压裂开采分析[54]
A novel three-dimensional hydraulic fracturing model based on continuum-discontinuum element method[98]
A two-scale contact model for collisions between blocks in CDEM[99]

表2

多物理场耦合索引"

温度场 应力场 湿度场 气压场 化学场 裂缝扩展 文献
Thermo-mechanically-induced thermal conductivity change and its effect on the behaviour of concrete[3]
Simulation of electro-migration through peridynamics[4]
Fully coupled thermomechanical analysis of fiber reinforced composites usingperidynamics[5]
Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model[14]
A linear analysis of thermal effects on evaporation from soil[16]
温度应力诱发的岩石裂纹扩展研究[26]
FDEM-TM方法模拟岩石热破裂[28]
The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution[52]
Simulating fully 3D hydraulic fracturing[53]
核废料处置概念库近场热-水-应力耦合二维有限元模拟[57]
土体冻融过程中水、热、力三场耦合本构问题及数值分析[58]
模拟冻-融过程的热-水-应力耦合模型及数值分析[59]
早龄期混凝土的多物理场耦合数值分析[69]
基于水泥水化的早龄期混凝土温湿耦合[70]
Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures[71]
1 黎明镜. 热力耦合作用下深井巷道围岩变形规律研究[D]. 淮南: 安徽理工大学, 2010.
LI Mingjing. Study of the deformation laws of rock roadways in deep mine bases on thermo-mechanical coupling[D]. Huainan: Anhui University of Science and Technology, 2010.
2 苗艳春, 张玉, 雷闯, 等. 热力耦合途径下再生保温混凝土的细观力学性能[J]. 郑州大学学报(工学版), 2021, 42 (5): 79- 85.
doi: 10.13705/j.issn.1671-6833.2021.05.003
MIAO Yanchun , ZHANG Yu , LEI Chuang , et al. Meso-scale response of recycled aggregate thermal insulation concrete based oncoupled thermo-mechanical modeling[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42 (5): 79- 85.
doi: 10.13705/j.issn.1671-6833.2021.05.003
3 NGUYENTD , PHAM D T , VU M N . Thermo-mechanically-induced thermal conductivity change and its effect on the behaviour of concrete[J]. Construction and Building Materials, 2019, 198 (20): 98- 105.
4 OTERKUS S, FOX J, MADENCI E. Simulation of electro-migration through peridynamics[C]//2013 IEEE 63rd Electronic Components and Technology Conference. St. Louis, USA: IEEE, 2013: 1488-1493.
5 OTERKUS S, MADENCI E. Fully coupled thermomechanical analysis of fiber reinforced composites using peridynamics[C]// 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference-SciTech Forum and Exposition. National Harbor, MD, USA: AIAA, 2014: 13-17.
6 吴泽艳, 郑保敬, 叶永, 等. 非线性热传导方程MLPG/RBF-FD无网格数值模拟[J]. 工程热物理学报, 2022, 43 (1): 164- 172.
WU Zeyan , ZHENG Baojing , YE Yong , et al. Numerical simulation for the nonlinear heat conduction equations based on MLPG/RBF-FDmeshless method[J]. Journalof Engineering Thermophysics, 2022, 43 (1): 164- 172.
7 GAWIND D , KONIORCZYK M , PESAVENTO F . Modelling of hydro-thermo-chemo-mechanical phenomena in building materials[J]. Bulletin of the Polish Academy of Sciences, Technical Sciences, 2013, 61 (1): 51- 63.
doi: 10.2478/bpasts-2013-0004
8 GAWIND D , PESAVENTO F , BA S . What physical phenomena can be neglected when modelling concrete at high temperature? a comparative study: Part 2: comparison between model[J]. International Journal of Solids and Structures, 2011, 48, 1945- 1961.
doi: 10.1016/j.ijsolstr.2011.03.003
9 科曼, 潘金贵. 算法导论[M]. 北京: 机械工业出版社, 2006.
KE Man , PAN Jingui . Introduction to algorithms[M]. Beijing: China Machine Press, 2006.
10 MATTHIAS B , EFTEKHARIA , SCHEIDEGGER S , et al. Large-scale sparse inverse covariance matrix estimation[J]. SIAM Journal on Scientific Computing, 2019, 41 (1): 380- 401.
doi: 10.1137/17M1147615
11 CHRISTOPHER J G, HENRY G W. Notes on computational fluid dynamics: general principles[M]. CFD Direct Ltd. : 2022.
12 PATRICK A , LAIN D , JEAN-YVES L'E . Multifrontal parallel distributed symmetric and unsymmetric solvers[J]. Computer Methods in Applied Mechanics & Engineering, 2000, 184 (2/3/4): 501- 520.
13 PATRICK A , LAIN D , JEAN-YVES L'E , et al. Impact of the Implementation of MPI point-to-point communications on the performance of two general sparse solvers[J]. Parallel Computing, 2003, 29 (7): 833- 849.
doi: 10.1016/S0167-8191(03)00067-X
14 MILLY P C D . Moisture and heat transport inhysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model[J]. Water Resources Research, 1982, 18 (3): 489- 498.
doi: 10.1029/WR018i003p00489
15 MILLY P C D . A linear analysis of thermal effects on evaporation from soil[J]. Water Resources Research, 1984, 20 (8): 1075- 1085.
doi: 10.1029/WR020i008p01075
16 SAITO H , SIMUNEK J , BINAYAK P M . Numerical analysis of coupled water, vapor, and heat transport in the vadose zone[J]. Vadose Zone Journal, 2006, (5): 784- 800.
17 曾亦键. 浅层包气带水-汽-热耦合运移规律及其数值模拟研究[D]. 北京: 中国地质大学, 2012.
ZENG Yijian. Coupled water-vapor-heat transport in the unsaturated soil and its numerical simulation[D]. Beijing: China University of Geosciences, 2012.
18 姜建梅. 基于滨海平原区浅层地下水对土壤水热运移规律的影响研究[D]. 天津: 天津大学, 2015.
JIANG Jianmei. The effect of shallow groundwater on coupled soil water vapor and heat transport in coastal plain[D]. Tianjin: Tianjin University, 2015.
19 夏琼, 王旭. 土水特征参数对蒸发面发展影响规律数值模拟研究[J]. 兰州交通大学学报, 2020, 39 (1): 20- 26.
XIA Qiong , WANG Xu . Numerical simulation study on the influence of soil-water characteristic parameter on vaporization plane developing[J]. Journal of Lanzhou Jiaotong University, 2020, 39 (1): 20- 26.
20 洪勃. 黄土水气热传导特性及其热湿运移规律试验研究[D]. 西安: 长安大学, 2020.
HONG Bo. Research on water, air and heat conduction characteristics and its heat-moisture transfer of loess[D]. Xi'an: Chang'an University, 2020.
21 黄家晟, 王路君, 刘燕晶, 等. 含气土地基热水气力耦合时变行为分析[J]. 岩土力学, 2021, 42 (9): 2507- 2517.
HUANG Jiasheng , WANG Lujun , LIU Yanjing , et al. Time-dependent behaviour of thermal-hydro-mechanical coupling of gassy soils[J]. Rock and Soil Mechanics, 2021, 42 (9): 2507- 2517.
22 LIU L , JI H , ELSWORTH D , et al. Dual-damage constitutive model to define thermal damage in rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126, 104185.
doi: 10.1016/j.ijrmms.2019.104185
23 谭启, 骆循, 李仕雄, 等. 岩石热破裂研究进展评述[J]. 露天采矿技术, 2006, (6): 16- 19.
doi: 10.13235/j.cnki.ltcm.2006.06.007
TAN Qi , LUO Xun , LI Shixiong , et al. Comments on rock thermal fracturing study progress[J]. Opencast Mining Technology, 2006, (6): 16- 19.
doi: 10.13235/j.cnki.ltcm.2006.06.007
24 唐世斌, 唐春安, 梁正召, 等. 热冲击作用下的陶瓷材料破裂过程数值分析[J]. 复合材料学报, 2008, (2): 115- 122.
TANG Shibin , TANG Chun'an , LIANG Zhengzhao , et al. Failure process analysis of ceramic materials subjected to thermal shock[J]. Acta Materiae Compositae Sinica, 2008, (2): 115- 122.
25 李连崇, 唐春安, 唐世斌, 等. 含损伤演化的TM耦合数值模型及其应用研究[J]. 力学学报, 2006, (4): 505- 513.
LI Lianchong , TANG Chun'an , TANG Shibin , et al. The damage coupled thermo-mechanical(TM) model for rock failure process and applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, (4): 505- 513.
26 罗江. 温度应力诱发的岩石裂纹扩展研究[D]. 大连: 大连理工大学, 2018.
LUO Jiang. Study on rock crack propagation induced by temperature stress[D]. Dalian: Dalian University of Technology, 2018.
27 LI Jia , JIANG Chiping . Direct numerical simulations on crack formation in ceramic materials under thermal shock by using a non-local fracture model[J]. Journal of the European Ceramic Society, 2013, 33 (13): 2677- 2687.
28 严成增. FDEM-TM方法模拟岩石热破裂[J]. 岩土工程学报, 2018, 40 (7): 1198- 1204.
YAN Chengzeng . Simulating thermal cracking of rock using FDEM-TM method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (7): 1198- 1204.
29 刘学伟, 刘泉声, 卢超波, 等. 温度-应力耦合作用下岩体裂隙扩展的数值流形方法研究[J]. 岩石力学与工程学报, 2014, 33 (7): 1432- 1441.
LIU Xuewei , LIU Quansheng , LU Chaobo , et al. A numerical manifold method for fracture propagation of rock mass considering thermo-mechanical coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (7): 1432- 1441.
30 张英, 李鹏, 郭奇峰, 等. 水力耦合裂隙岩体变形破坏机制研究进展[J]. 哈尔滨工业大学学报, 2020, 52 (6): 21- 41.
ZHANG Ying , LI Peng , GUO Qifeng , et al. Research progress of deformation and failure mechanism in fractured rock mass under hydromechanical coupling[J]. Journal of Harbin Institute of Technology, 2020, 52 (6): 21- 41.
31 李根, 唐春安, 李连崇. 水岩耦合变形破坏过程及机理研究进展[J]. 力学进展, 2012, 42 (5): 593- 619.
LI Gen , TANG Chun'an , LI Lianchong . Advances in rock deformation and failureprocess under water-rock coupling[J]. Advances in Mechanics, 2012, 42 (5): 593- 619.
32 GUO Q , PAN J , CAI M , et al. Investigating the effect of rock bridge on the stability of locked section slopes by the direct shear test and acoustic emission technique[J]. Sensors, 2020, 20 (3): 638.
doi: 10.3390/s20030638
33 OTTO S , TILL P , HARTMUT K . Development of damage and permeability in deforming rock salt[J]. Engineering Geology, 2001, 61, 163.
doi: 10.1016/S0013-7952(01)00051-5
34 SOULEY M , HOMAND F , PEPA S , et al. Damage-induced permeability changes in granite: a case example at the URL in Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38, 297.
doi: 10.1016/S1365-1609(01)00002-8
35 MARTIN C D , CHANDLER N A . The progressive fracture of lac du bonnet granite[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1994, 31 (6): 643.
36 张玉军. 遍有节理岩体的双重孔隙-裂隙介质热-水-应力耦合模型及有限元分析[J]. 岩石力学与工程学报, 2009, 28 (5): 947- 955.
ZHANG Yujun . Coupled thermo-hydro-mechanical model and finiteelement analyses ofdual-porosity fractured medium forubiquitous-joint rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (5): 947- 955.
37 陈卫忠, 王鲁瑀, 谭贤君, 等. 裂隙岩体地下工程稳定性研究发展趋势[J]. 岩石力学与工程学报, 2021, 40 (10): 1945- 1961.
doi: 10.13722/j.cnki.jrme.2020.1074
CHEN Weizhong , WANG Luyu , TAN Xianjun , et al. State-of-the-art and development tendency of the underground engineeringstability of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (10): 1945- 1961.
doi: 10.13722/j.cnki.jrme.2020.1074
38 王媛, 速宝玉, 徐志英. 裂隙岩体渗流模型综述[J]. 水科学进展, 1996, (3): 93- 99.
WANG Yuan , SU Baoyu , XU Zhiying . Comment on the models of seepage flowin fractured rock masses[J]. Advances in Water Science, 1996, (3): 93- 99.
39 刘仲秋, 章青. 岩体中饱和渗流应力耦合模型研究进展[J]. 力学进展, 2008, (5): 585- 600.
LIU Zhongqiu , ZHANG Qing . A review on the state of art of the saturated seepage-stress coupling models in rock mass[J]. Advances in Mechanics, 2008, (5): 585- 600.
40 何冠鸿. 岩石单裂隙渗流粗糙起伏角修正公式研究[D]. 北京: 清华大学, 2014.
HE Guanhong. Study on the modified equation of single fracture seepage with roughness angle[D]. Beijing: Tsinghua University, 2014.
41 ANDREW P B , ROBERT G J . Cohesive zone finite element-based modeling of hydraulic fractures[J]. Acta Mechanica SolidaSinica, 2009, 22 (5): 443- 452.
42 HU Qianting, LIU Jichuan, LI Quangui, et al. Numerical simulation of seepage induced stress field in segmentedhydraulic fracturing of coal seam[J/OL]. Journal of Mining & Safety Engineering. [2022-07-24]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=KSYL20220217000&DbName=DKFX2022.
43 张瑛堃, 陈尚斌, 李学元, 等. 页岩气储层水力压裂扩展有限元模拟方法及应用[J]. 天然气地球科学, 2021, 32 (1): 109- 118.
ZHANG Yingkun , CHEN Shangbin , LI Xueyuan , et al. Hydraulic fracturing simulation technology of shale gas reservoir and application of extened finite element method[J]. Natural Gas Geoscience, 2021, 32 (1): 109- 118.
44 彪仿俊, 刘合, 张士诚, 等. 水力压裂水平裂缝影响参数的数值模拟研究[J]. 工程力学, 2011, 28 (10): 228- 235.
BIAO Fangjun , LIU He , ZHANG Shicheng , et al. A numerical study of parameter influences on horizontalhydraulic fracture[J]. Engineering Mechanics, 2011, 28 (10): 228- 235.
45 王利, 张新生, 田林, 等. 基于孔隙弹性耦合的水力压裂数值模拟研究[J]. 固体力学学报, 2017, 38 (6): 558- 569.
WANG Li , ZHANG Xinsheng , TIAN Lin , et al. The coupling method and numerical simulation of hydraulic fracturing based on poroelasticity[J]. Chinese Journal of Solid Mechanics, 2017, 38 (6): 558- 569.
46 ELIZAVETA G , ANTHONY P . Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 474- 502.
47 GORDELIY E , ANTHONY P . Coupling schemes for modeling hydraulic fracture propagation using the XFEM[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253 (1): 305- 322.
48 BAO Jinqing , EBRAHIM F , SAMUEL A . A unified finite element method for the simulation of hydraulic fracturing with and without fluid lag[J]. Engineering Fracture Mechanics, 2016, 164- 178.
49 师文豪, 杨天鸿, 于庆磊, 等. 层状边坡各向异性岩体渗流-应力耦合模型及工程应用[J]. 岩土力学, 2015, 36 (8): 2352- 2360.
SHI Wenhao , YANG Tianhong , YU Qinglei , et al. Seepage-stress coupling model of anisotropic rock massof stratified slope and its engineering application[J]. Rock and Soil Mechanics, 2015, 36 (8): 2352- 2360.
50 李廷春, 李术才, 陈卫忠, 等. 厦门海底隧道的流固耦合分析[J]. 岩土工程学报, 2004, 26 (3): 397.
LI Tingchun , LI Shucai , CHEN Weizhong , et al. Coupled fluid-mechanical analysis of Xiamen subsea tunnel[J]. Chinese Journal of Geotechnical Engineering, 2004, 26 (3): 397.
51 景国勋, 王远声, 周霏, 等. 基于RFPA2D的不同角度穿层钻孔水力压裂技术模拟研究[J]. 煤矿开采, 2018, 23 (5): 103- 107.
JING Guoxun , WANG Yuansheng , ZHOU Fei , et al. Numerical simulation study of water fracturing with different angle through beds holes based on RFPA2D[J]. Journal of Mining and Strata Control Engineering, 2018, 23 (5): 103- 107.
52 HIROYUKI S , SUMIHIKO M , TSUYOSHI I . The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48, 712- 727.
53 CARTER B J , DESROCHES J , INGRAFFEA A R . Simulating fully 3d hydraulic fracturing[J]. Modeling in Geomechanics, 2000, 525-557
54 高慧, 冯春, 朱心广, 等. 基于连续-非连续元三维煤层气压裂开采分析[J]. 山东大学学报(工学版), 2021, 51 (6): 119- 128.
GAO Hui , FENG Chun , ZHU Xinguang , et al. Three-dimensional hydraulic fracturing analysis of coal bed methane based on continuous-discontinous element method[J]. Journal of Shandong University (Engineering Science), 2021, 51 (6): 119- 128.
55 GHASSAN A , ALAIN T , ABDALLAHS , et al. Thermal convection of fluid in fractured media[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1995, 32 (5): 481- 490.
56 RD Hart , CMS John . Formulation of a fully-coupled Thermal-Mechanical-Fluid Model for non-linear geologic systems[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1986, 23 (3): 213- 224.
57 张玉军. 核废料处置概念库近场热-水-应力耦合二维有限元模拟[J]. 岩土工程学报, 2006, (9): 1053- 1058.
ZHANG Yujun . 2D FEM simulation for coupled thermo-hydro-mechanical processes of near field in conceptual nuclear waste repository[J]. Chinese Journal of Geotechnical Engineering, 2006, (9): 1053- 1058.
58 朱志武, 宁建国, 马巍. 土体冻融过程中水、热、力三场耦合本构问题及数值分析[J]. 工程力学, 2007, (5): 138- 144.
ZHU Zhiwu , NING Jianguo , MA Wei . Constitutive model and numerical analysis for thecoupled problem of water, temperature and stress fieldsin the process of soil freeze-thaw[J]. Engineering Mechanics, 2007, (5): 138- 144.
59 张玉军. 模拟冻-融过程的热-水-应力耦合模型及数值分析[J]. 固体力学学报, 2009, 30 (4): 409- 415.
ZHANG Yujun . Coupled thermo-hydro-mechanical model and numerical analysis for simulation of freezing-thawing process[J]. Chinese Journal of Solid Mechanics, 2009, 30 (4): 409- 415.
60 NEAUPANE K M , YAMABE T , YOSHINAKA R . Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36 (5): 563- 580.
61 王海静, 薛世峰, 仝兴华, 等. 热采环境泥岩层应力演化规律及破坏机理研究[J]. 西南石油大学学报(自然科学版), 2017, 39 (4): 119- 126.
WANG Haijing , XUE Shifeng , TONG Xinghua , et al. Study on stress evolution and failure mechanism of mudstone layer in thermal recovery environment[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39 (4): 119- 126.
62 RUTQVIST J . Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations[J]. Computers and Geosciences, 2011, 37 (6): 739- 750.
63 LEI Hongwu , XU Tianfu , JIN Guangrong . TOUGH2Biot: a simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: application to CO2 geological storage and geothermal development[J]. Computers & Geosciences, 2015, 77, 8- 19.
64 ZHAO Y , FENG Z , FENG Z , et al. THM (thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000-7000 m[J]. Energy, 2015, 82, 193- 205.
65 孙致学, 姜传胤, 张凯, 等. 基于离散裂缝模型的CO2增强型地热系统THM耦合数值模拟[J]. 中国石油大学学报(自然科学版), 2020, 44 (6): 79- 87.
SUN Zhixue , JIANG Chuanyin , ZHANG Kai , et al. Numerical simulation for heat extraction of CO2-EGS with thermal-hydraulic-mechanical coupling method based on discrete fracture models[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44 (6): 79- 87.
66 郭志光, 白冰. 饱和度对多孔介质中热-水-力耦合响应的影响[J]. 岩土工程学报, 2018, 40 (6): 1021- 1028.
GUO Zhiguang , BAI Bing . Effect of saturation on thermo-hydro-mechanical coupled responses inporous media[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (6): 1021- 1028.
67 TOMAC I, GUTIERREZ M. Micro-mechanics of hydro-thermo-mechanical fracture propagation in granite[C]//Proceeding of the 48th USA Rock Mechanics/Geomechanics Symposium, Minneapolis, USA: [s. n], 2014: 7148.
68 张伟, 曲占庆, 郭天魁, 等. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40 (5): 2001- 2008.
ZHANG Wei , QU Zhanqing , GUO Tiankui , et al. Numerical simulation of hydraulic fracturing in hot dry rocksunder the influence of thermal stress[J]. Rock and Soil Mechanics, 2019, 40 (5): 2001- 2008.
69 张一鸣. 早龄期混凝土的多物理场耦合数值分析[D]. 上海: 同济大学, 2009.
ZHANG Yiming. Multi-physical fields coupled numerical analysis of early age concrete[D]. Shanghai: Tongji University, 2009.
70 杜明月, 田野, 金南国, 等. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49 (8): 1410- 1416.
DU Yueming , TIAN Ye , JIN Nanguo , et al. Coupling of hygro-thermal field in early-age concrete based on cement hydration[J]. Journal of Zhejiang University(Engineering Science), 2015, 49 (8): 1410- 1416.
71 LACKNER R , MANG H . Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures[J]. Cement and Concrete Composites, 2004, 26 (5): 551- 562.
72 金贤玉, 田野, 金南国. 混凝土早龄期性能与裂缝控制[J]. 建筑结构学报, 2010, 31 (6): 204- 212.
JIN Xianyu , TIAN Ye , JIN Nanguo . Early age properties and cracking control of concrete[J]. Journal of Building Structures, 2010, 31 (6): 204- 212.
73 赵志宏, 井兰如, 宋二祥. 裂隙岩体中力学-渗流-传输耦合离散元模拟[J]. 地下空间与工程学报, 2014, 10 (5): 1023- 1029.
ZHAO Zhihong , JING Lanru , SONG Erxiang . Discrete element modeling of coupled mechanical-flow-transport processes in fractured rocks[J]. Chinese Journal of Underground Space and Engineering, 2014, 10 (5): 1023- 1029.
74 ZHAO Zhihong , JING Lanru , IVARS N , et al. Numerical modeling of stress effects on solute transport in fractured rocks[J]. Computers & Geotechnics, 2011, 38 (2): 113- 126.
75 ZHAO Zhihong , JING Lanru , NERETNIEK S , et al. A new numerical method of considering local longitudinal dispersion in single fractures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38 (1): 20- 36.
76 吴建营, 陈万昕, 黄羽立. 基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测[J]. 力学学报, 2021, 53 (5): 1367- 1382.
WU Jianying , CHEN Wanxin , HUANG Yuli . Computational modeling of shrinkage induced crackingin early-age concrete based on theunified phase-field theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (5): 1367- 1382.
77 SU Huaizhi , HU Jiang , LI Hao . Multi-scale performance simulation and effect analysis for hydraulic concrete submitted to leaching and frost[J]. Engineering With Computers, 2018, 34, 821- 842.
78 应伟超. 混凝土早期受冻损伤的数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
YING Weichao. Numerical simulation research on the frost damage of early-age concrete[D]. Haerbin: Harbin Institute of Technology, 2021.
79 王立成, 吴迪, 鲍玖文, 等. 早龄期混凝土温度场分布的细观数值仿真分析[J]. 水利学报, 2017, 48 (9): 1015- 1022.
WANG Licheng , WU Di , BAO Jiuwen , et al. Mesoscale numerical simulation analysis for temperature distribution in early-age concrete[J]. Journal of Hydraulic Engineering, 2017, 48 (9): 1015- 1022.
80 王玉林, 谢康和, 王坤, 等. 非均匀表皮效应对各向异性稳态承压井流的影响[J]. 岩土力学, 2011, 32 (7): 2133- 2138.
WANG Yulin , XIE Kanghe , WANG Kun , et al. Influence of nonuniform skin effect on steady radialflow in anisotropic confined aquifer[J]. Rock and Soil Mechanics, 2011, 32 (7): 2133- 2138.
81 尚松浩, 雷志栋, 杨诗秀. 冻结条件下土壤水热耦合迁移数值模拟的改进[J]. 清华大学学报(自然科学版), 1997, 37 (8): 64- 66.
SHANG Songhao , LEI Zhidong , YANG Shixiu . Numerical simulation improvementof coupled moisture and heat transfer during soil freezing[J]. Journal of Tsinghua University (Sci & Tech), 1997, 37 (8): 64- 66.
82 高效伟, 曾文浩, 崔苗. 等参管单元及其在热传导问题边界元法中的应用[J]. 计算力学学报, 2016, 33 (3): 328- 334.
GAO Xiaowei , ZENG Wenhao , CUI Miao . Isoparametric tube elements and their application in heat conduction BEM analysis[J]. Chinese Journal of Computational Mechanics, 2016, 33 (3): 328- 334.
83 刘俊俏, 苗福生, 李星. 二维各向异性功能梯度材料热传导的边界元分析[J]. 西安交通大学学报, 2013, 47 (5): 77- 81.
LIU Junqiao , MIAO Fusheng , LI Xing . Boundary element analysis of the two-dimensional heat conduction equation for anisotropic functional graded materials[J]. Journal of Xi'an Jiaotong University, 2013, 47 (5): 77- 81.
84 夏光明. 瞬态渗流问题边界元法初步研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
XIA Guangming. Preliminary study on transient flow by BEM[D]. Haerbin: Harbin Institute of Technology, 2015.
85 余天堂, 万林林. 非均质材料热传导问题的扩展有限元法[J]. 计算力学学报, 2011, 28 (6): 884- 890.
YU Tiantang , WAN Linlin . Extended finite element method for heat transfer problems in heterogeneous material[J]. Chinese Journal of Computational Mechanics, 2011, 28 (6): 884- 890.
86 何敏, 李宁, 高焕焕, 等. 带相变瞬态温度场问题的扩展有限元解析[J]. 冰川冻土, 2016, 38 (4): 1044- 1051.
HE Min , LI Ning , GAO Huanhuan , et al. Extended finite element method analysis for the transient temperature field with phase change[J]. Journal of Glaciology and Geocryology, 2016, 38 (4): 1044- 1051.
87 JU Y , LI Y , WANG Y , et al. Stress shadow effects andmicroseismic events during hydrofracturing of multiple vertical wells in tight reservoirs: a three-dimensional numerical model[J]. Journal of Natural Gas Science and Engineering, 2020, 84, 1- 20.
88 ZENG Wei , YANG Shengqi , TIAN Wenling , et al. Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code[J]. Journal of Central South University, 2018, 25 (6): 1367- 1385.
89 蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43 (8): 1391- 1398.
JIANG Mingjing , CHEN Yiru , LU Guowen . A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (8): 1391- 1398.
90 张政, 谢灼利. 流体-固体两相流的数值模拟[J]. 化工学报, 2001, (1): 1- 12.
ZHANG Zheng , XIE Zhuoli . Numerical simulation of fluid-solid two-phase flows[J]. Journal of Chemical Industry and Engineering (China), 2001, (1): 1- 12.
91 KAIDI S , OUAHSINE A , ROUAINIA M , et al. DDA in fluid-structure problems for the study of gravity dam failure[J]. Revue Européenne de Mécanique Numé-rique, 2010, 19
92 虞松, 朱维申, 张云鹏. 基于DDA方法一种流-固耦合模型的建立及裂隙体渗流场分析和应用[J]. 岩土力学, 2015, 36 (2): 555- 560.
YU Song , ZHU Weishen , ZHANG Yunpeng . Coupled hydro-mechanical model based DDAmethod for seepage analysis of fractured rock mass and its application[J]. Rock and Soil Mechanics, 2015, 36 (2): 555- 560.
93 郑春梅. 基于DDA的裂隙岩体水力耦合研究[D]. 济南: 山东大学, 2010.
ZHENG Chunmei. Study on hydro-mechanical coupling of fractured rock mass based on DDA[D]. Jinan: Shandong University, 2010.
94 孙玉杰, 邬爱清, 张宜虎, 等. 基于离散单元法的裂隙岩体渗流与应力耦合作用机制研究[J]. 长江科学院院报, 2009, 26 (10): 62- 66.
SUN Yujie , WU Aiqing , ZHANG Yihu , et al. Three-dimensional seepage analysis of powerhouse dam section of xiaxia institute anti-regulation reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26 (10): 62- 66.
95 刘泉声, 吴月秀, 刘滨. 应力对裂隙岩体等效渗透系数影响的离散元分析[J]. 岩石力学与工程学报, 2011, 30 (1): 176- 183.
LIU Quansheng , WU Yuexiu , LIU Bin . Discrete element analysis of effect of stress onequivalent permeability of fractured rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (1): 176- 183.
96 张玉军. 核废料地质处置概念库HM耦合和THM耦合过程的二维离散元分析与比较[J]. 工程力学, 2008, 25 (4): 218- 223.
ZHANG Yujun . Analysis and comparison of coupled HM and THM processes by 2D distinct element method in a conceptual nuclear waste repository[J]. Engineering Mechanics, 2008, 25 (4): 218- 223.
97 魏怀鹏, 易大可, 李世海, 等. 基于连续介质模型的离散元方法中弹簧性质研究[J]. 岩石力学与工程学报, 2006, (6): 1159- 1169.
WEI Huaipeng , YI Dake , LI Shihai , et al. Study on spring properties of continuum-based discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, (6): 1159- 1169.
98 ZHU Xinguang , FENG Chun , CHENG Pengda , et al. A novel three-dimensional hydraulic fracturing model based on continuum-discontinuum element method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383 (6): 113887.
99 LI Shihai , TANG Dehong , WANG Jie . A two-scale contact model for collisions between blocks in CDEM[J]. Science China(Technological Sciences), 2015, 58 (9): 1596- 1603.
[1] 郑卫琴,许杰,孙杰,武科. 复合地层TBM隧道管片受力特征[J]. 山东大学学报 (工学版), 2022, 52(4): 210-213.
[2] 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79.
[3] 刘舫辰,石岩,李元鲁,王湛,杜文静,季万祥. 用于燃煤电厂的低温省煤器前烟道流动及磨损特性[J]. 山东大学学报 (工学版), 2022, 52(3): 100-108.
[4] 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92.
[5] 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41.
[6] 卢光兆,周博,徐锋,上官伟,王刚,张书博. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报 (工学版), 2021, 51(4): 61-70.
[7] 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51.
[8] 王春国. 硬岩隧道施工通风系统优化与抑尘效果评价[J]. 山东大学学报 (工学版), 2021, 51(3): 52-60.
[9] 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38.
[10] 苏思博,王国清,贾献卓,李志聪,黄志刚. 剪跨比对插槽式连接空心管墩抗震性能影响[J]. 山东大学学报 (工学版), 2021, 51(1): 39-45.
[11] 徐再根,刘正伟,刘文棚,周梦瑶,刘俊才,田利. 输电塔单双角钢过渡节点计算方法[J]. 山东大学学报 (工学版), 2021, 51(1): 87-93.
[12] 闫吉庆,王效嘉,田茂诚. 含不凝气蒸汽在锯齿形表面的凝结传热特性[J]. 山东大学学报 (工学版), 2020, 50(6): 129-134.
[13] 陈禹成,王朝阳,郭明,林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报 (工学版), 2020, 50(5): 33-43.
[14] 祁金胜,曹洪振,石岩,杜文静,王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69, 76.
[15] 曹洪振,祁金胜,袁宝强,杜文静,王湛. 偏心方圆节扩散管数值模拟[J]. 山东大学学报 (工学版), 2020, 50(5): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴俊飞,王威强,胡德栋,崔玉良, . 平阴尿塔塔体爆炸能量分析与计算[J]. 山东大学学报(工学版), 2008, 38(4): 80 -83 .
[2] 田伟,乔谊正,马志强 . 基于DWT的二次特征提取脱机中文签名鉴定[J]. 山东大学学报(工学版), 2007, 37(3): 55 -59 .
[3] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .
[4] 刘云,邱晓国 . 内插TOC系数法测定水体中COD研究[J]. 山东大学学报(工学版), 2007, 37(4): 108 -117 .
[5] 顿月芹 闵越 袁建生. 阵列侧向测井正演响应的特性分析[J]. 山东大学学报(工学版), 2010, 40(1): 121 -125 .
[6] 林彦,魏东 . 铸钢空心球管节点的破坏机理分析与承载力影响因素[J]. 山东大学学报(工学版), 2006, 36(3): 103 -107 .
[7] 郑桂兰,马庆雷,潘秀华 . 旧水泥混凝土路面沥青加铺层结构设计方法研究[J]. 山东大学学报(工学版), 2007, 37(4): 93 -97 .
[8] 左凯 孙同景 李振华. 基于康普顿散射的物体厚度测量方法[J]. 山东大学学报(工学版), 2009, 39(6): 68 -71 .
[9] 杜乾蔚 何彬 王玉玲 游智.
基于遗传算法的含金属混合炸药配方设计
[J]. 山东大学学报(工学版), 2009, 39(5): 149 -152 .
[10] 张丽梅1,2 ,乔立山1,2 ,陈松灿1 . 基于张量模式的特征提取及分类器设计综述[J]. 山东大学学报(工学版), 2009, 39(1): 6 -14 .