山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 100-108.doi: 10.6040/j.issn.1672-3961.0.2021.560
• • 上一篇
刘舫辰1,石岩1,李元鲁1,王湛1,杜文静1,季万祥2*
LIU Fangchen1, SHI Yan1, LI Yuanlu1, WANG Zhan1, DU Wenjing1, JI Wanxiang2*
摘要: 以低温省煤器及其管道为研究对象,采用数值模拟方法,对低温省煤器及其管道流动及磨损特性进行分析,采用添加导流板的方式对流场进行优化以降低磨损量。低温省煤器前方圆节的布置导致流场紊乱,低温省煤器入口截面速度分布均匀性较差,管束磨损区域与高速区相对应,冲蚀磨损主要集中在中心区域,第一排管束迎风区磨损量最大,后排管束磨损量依次降低;对方圆节内置导流板进行优化后,低温省煤器前流场速度标准偏差由34.9降低至15.2,均匀性提高,管束的最大冲蚀磨损量降低两个数量级,磨损程度大幅度降低,保障了低温省煤器的安全经济运行,为低温省煤器及其管道的优化设计及运行提供了理论参考与数据支持。
中图分类号:
[1] FINNIE I. Erosion of surfaces by solid particles[J]. Wear, 1960, 3(2):87-103. [2] FINNIE I. Some observations on the erosion of ductile metals[J]. Wear, 1972, 19(1):81-90. [3] BAUVER W, BIANCA J, FISHBURN J, et al. Characterization of erosion of heat transfer tubes in coal fired power plants[J]. American Society of Mechanical Engineers, 1984, 84(3): 840-905. [4] OKA Y I, OKAMURA K, YSOHIDA T. Practical estimation of erosion damage caused by solid particle impact[J]. Wear, 2005, 259(1):95-101. [5] OKA Y I,OKAMURA K, YOSHIDA T. Practical estimation of erosion damage caused by solid particle impact: Part 2: mechanical properties of materials directly associated with erosion damage[J]. Wear, 2005, 259(1):102-109. [6] PARSIM, NAJMI K, NAJAFIFARD F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. Journal of Natural Gas Science & Engineering, 2014, 21:850-873. [7] RAASK E. Tube erosion by ash impaction[J]. Wear, 1969, 13(4):301-315. [8] LEE B E, FLETCHER C, BEHNIA M. Computational study of solid particle erosion for a single tube in cross flow[J]. Wear, 2000, 240(1,2):95-99. [9] LEE B E, TU J Y, FLERCHER C. On numerical modeling of particle-wall impaction in relation to erosion prediction: Eulerian versus Lagrangian method[J]. Wear, 2002, 252(3,4):179-188. [10] FAN J, ZHOU D, JIN J, et al. Numerical simulation of tube erosion by particle impaction[J]. Wear, 1991, 142(1):171-184. [11] 袁宝强. 基于气固两相流的受热面磨损与沉积特性研究[D]. 济南: 山东大学, 2018. YUAN Baoqiang. Study on wear and deposition characteristics of heating surface based on gas-solid two-phase flow[D]. Jinan: Shandong University, 2018. [12] JIN T, LUO K, WU F, et al. Numerical investigation of erosion on a staggered tube bank by particle laden flows with immersed boundary method[J]. Applied Thermal Engineering, 2014, 62(2):444-454. [13] WANG Z L, FAN J R. Numerical study of solid particle erosion on the tubes near the side walls in a duct with flow past an aligned tube bank[J]. Aiche Journal, 2010, 56(1):66-78. [14] 解其林,陈昊,郭万军.电厂换热管束冲蚀磨损数值模拟分析[J].机电工程技术,2021,50(8):188-191. XIE Qilin, CHEN Hao, GUO Wanjun. Numerical simulation analysis of erosion wear of heat exchange tube bundle in power plant[J]. Mechanical and Electrical Engineering Technology, 2021, 50(8):188-191. [15] 阎维平, 马凯, 高正阳, 等. 增压富氧燃煤锅炉省煤器管束磨损研究[J].西安交通大学学报, 2013, 47(3):53-59. YAN Weiping, MA Kai, GAO Zhengyang, et al. Study on tube bundle wear of economizer in pressurized oxygen-rich coal-fired boiler[J]. Journal of Xi'an Jiaotong University, 2013, 47(3):53-59. [16] 黄凯. 燃煤电厂烟气冷却器冲蚀磨损与中间媒介型烟气换热器优化研究[D].杭州:浙江大学,2020. HUANG Kai. Study on erosion wear of flue gas cooler and optimization of Intermediate medium flue gas heat exchanger in coal-fired power plant[D]. Hangzhou: Zhejiang University, 2020. [17] JIN Y, TANG G H, HE Y L, et al. Numerical study of the solid particle erosion on H-type finned circular/elliptic tube surface[J]. Communications in Computa-tional Physics, 2017, 21(2):466-489. [18] 王皓轩. 新型省煤器管束磨损与积灰特性的数值研究[D].北京:华北电力大学,2018. WANG Haoxuan. Numerical study on wear and Ash accumulation characteristics of tube bundle of new economizer[D]. Beijing: North China Electric Power University, 2018. [19] MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208. [20] FAN J, ZHOU D, JIN J, et al. Numerical simulation of tube erosion by particle impaction[J]. Wear, 1991, 142(1):171-184. [21] DAVIS D O, GESSNER F B. Experimental investigation of turbulent flow through a circular-to-rectangular transition duct[J]. American Institute of Aeronautics and Astronautics Journal, 1992, 30(2): 367-375. |
[1] | 逯国强,韩彦龙,韩吉田,陈立海,赵晓强,贺晓. 卧式螺旋管内R134a流动沸腾迟滞现象[J]. 山东大学学报 (工学版), 2022, 52(3): 94-99. |
[2] | 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79. |
[3] | 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92. |
[4] | 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41. |
[5] | 李旭,安春国,王兆阳,王湛,季万祥. 火电厂双管式烟囱内筒的流动特性[J]. 山东大学学报 (工学版), 2021, 51(4): 106-110. |
[6] | 卢光兆,周博,徐锋,上官伟,王刚,张书博. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报 (工学版), 2021, 51(4): 61-70. |
[7] | 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51. |
[8] | 王春国. 硬岩隧道施工通风系统优化与抑尘效果评价[J]. 山东大学学报 (工学版), 2021, 51(3): 52-60. |
[9] | 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38. |
[10] | 苏思博,王国清,贾献卓,李志聪,黄志刚. 剪跨比对插槽式连接空心管墩抗震性能影响[J]. 山东大学学报 (工学版), 2021, 51(1): 39-45. |
[11] | 徐再根,刘正伟,刘文棚,周梦瑶,刘俊才,田利. 输电塔单双角钢过渡节点计算方法[J]. 山东大学学报 (工学版), 2021, 51(1): 87-93. |
[12] | 闫吉庆,王效嘉,田茂诚. 含不凝气蒸汽在锯齿形表面的凝结传热特性[J]. 山东大学学报 (工学版), 2020, 50(6): 129-134. |
[13] | 陈禹成,王朝阳,郭明,林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报 (工学版), 2020, 50(5): 33-43. |
[14] | 祁金胜,曹洪振,石岩,杜文静,王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69, 76. |
[15] | 曹洪振,祁金胜,袁宝强,杜文静,王湛. 偏心方圆节扩散管数值模拟[J]. 山东大学学报 (工学版), 2020, 50(5): 77-82. |
|