您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 94-99.doi: 10.6040/j.issn.1672-3961.0.2021.364

• • 上一篇    

卧式螺旋管内R134a流动沸腾迟滞现象

逯国强1,韩彦龙2,韩吉田3,陈立海1*,赵晓强1,贺晓1   

  1. 1. 河北石油职业技术大学热能工程系, 河北 承德 067000;2. 河北石油职业技术大学机械工程系, 河北 承德 067000;3. 山东大学能源与动力工程学院, 山东 济南 250061
  • 发布日期:2022-06-23
  • 作者简介:逯国强(1985— ),男,山东泰安人,讲师,硕士,主要研究方向为汽液两相流. E-mail:lugqsd@163.com. *通信作者简介:陈立海(1980— ),男,河北承德人,讲师,博士,主要研究方向为计算流体力学. E-mail:272457555@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51076084)

Flow boiling hysteresis of R134a in horizontal helically-coiled tube

LU Guoqiang1, HAN Yanlong2, HAN Jitian3, CHEN Lihai1*, ZHAO Xiaoqiang1, HE Xiao1   

  1. 1. Department of Thermal Engineering, Hebei Petroleum University of Technology, Chengde 067000, Hebei, China;
    2. Department of Mechanical Engineering, Hebei Petroleum University of Technology, Chengde 067000, Hebei, China;
    3. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2022-06-23

摘要: 为得到R134a在卧式螺旋管内的流动沸腾迟滞特性,进行增-减热流密度试验。试验时逐渐改变加热的热流密度,记录壁温变化情况,绘制增大和减小热流密度的沸腾曲线,通过曲线分析浮升力、离心力对成核滞后的影响,以及压强对成核滞后和湮灭滞后的影响。结果表明,不同位置截面处浮升力和离心力对汽泡的脱离行为影响不同,导致成核滞后的明显差异;压强越高,成核滞后、湮灭滞后现象均越明显,压强主要通过影响R134a润湿性影响成核滞后,通过影响泡核的形成影响湮灭滞后。研究结果揭示的流动沸腾迟滞特性对于提高换热器的运行可靠性具有指导意义。

关键词: 螺旋管, 流动沸腾, 成核滞后, 湮灭滞后, 压强

中图分类号: 

  • TK124
[1] 汪亚桥, 罗佳利, 符远翔, 等. PTFE疏水修饰法消除多孔表面的沸腾迟滞现象[J]. 工程热物理学报, 2020, 41(1): 175-179. WANG Yaqiao, LUO Jiali, FU Yuanxiang, et al. PTFE modification to eliminate boiling hysteresis on porous surface[J]. Journal of Engineering Thermophysics, 2020, 41(1): 175-179.
[2] AHN H S, KIM J M, KAVIANY M, et al. Pool boiling experiments in reduced graphene oxide colloids Part II-behavior after the CHF, and boiling hysteresis[J]. International Journal of Heat and Mass Transfer, 2014, 78: 224-231.
[3] PONIEWSKI M E. Peculiarities of boiling heat transfer on capillary-porous coverings[J]. International Journal of Thermal Sciences, 2004, 43(5): 431-442.
[4] WOJCIK T M. Experimental investigations of boiling heat transfer hysteresis on sintered, metal-fibrous, porous structures[J]. Experimental Thermal and Fluid Science, 2009, 33(3): 397-404.
[5] 孟现珂, 孙中宁, 徐广展, 等. 填充床中沸腾传热迟滞现象的实验研究[J]. 原子能科学技术, 2013, 47(10): 1782-1786. MENG Xianke, SUN Zhongning, XU Guangzhan, et al. Experimental investigations of boiling heat transfer hysteresis on packed bed[J]. Atomic Energy Science and Technology, 2013, 47(10): 1782-1786.
[6] 刘芸. 池核沸腾传热与CaCO3垢生成的研究[D]. 大连: 大连理工大学, 2006. LIU Yun. Investigation on heat transfer and calcium carbonate scale formation during nucleate pool boiling[D]. Dalian: Dalian University of Technology, 2006.
[7] LIANG G T, MUDAWAR I. Review of pool boiling enhancement by surface modification[J]. International Journal of Heat and Mass Transfer, 2019, 128: 892-933.
[8] OLIVEIRA A V D S, ALEGRE G H M, SANTOS R G D. A comprehensive experimental study on nucleate boiling in gasoline and gasoline-ethanol blends[J]. Experimental Thermal and Fluid Science, 2017, 88: 134-144.
[9] MAHMOUD M M, KARAYIANNIS T G. Flow pattern transition models and correlations for flow boiling in mini-tubes[J]. Experimental Thermal and Fluid Science, 2016, 70: 270-282.
[10] BALAKIN B V, DELOV M I, KUTSENKO K V, et al. Short-time heat impulse intensification of heat transfer in liquid nitrogen[J]. Cryogenics, 2015, 67: 1-3.
[11] 张朝阳. 多因素下池沸腾换热的格子Boltzmann数值研究[D]. 上海: 上海交通大学, 2018. ZHANG Chaoyang. Numerical research of several effects on pool boiling heat transfer with laticce boltzmann method[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[12] 袁红胜,谭思超,李仲春, 等. 低压低流速条件下的过冷沸腾换热特性[J]. 原子能科学技术, 2018, 52(11): 1949-1955. YUAN Hongsheng, TAN Sichao, LI Zhongchun, et al. Subcooled flow boiling heat transfer under low pressure and low flow velocity[J]. Atomic Energy Science and Technology, 2018, 52(11): 1949-1955.
[13] LIANG H S, YANG W J. A remedy for hysteresis in nucleate boiling through application of micrographite-fiber nucleation activators[J]. Experimental Heat Transfer, 2007, 9(4): 323-334.
[14] ZHOU D W, LIU D Y. Boiling heat transfer in an acoustic cavitation field[J]. Chinese Journal of Chemical Engineering, 2002, 10(5): 625-629.
[15] 沈自求. 沸腾传热研究[J]. 大连理工大学学报, 2001, 41(3): 253-259. SHEN Ziqiu. Study of boiling heat transfer[J]. Journal of Dalian University of Technology, 2001, 41(3): 253-259.
[16] 赵孝保. 喷涂多孔表面沸腾传热实验研究[J]. 南京师范大学学报(工程技术版), 2001, 1(3): 12-16. ZHAO Xiaobao. Experimental research on pool boiling heat transfer from a spraying porous surface[J]. Journal of Nanjing Normal University(Engineering and Technology), 2001, 1(3): 12-16.
[17] 马强,吴晓敏,朱毅. 表面润湿性对核态池沸腾影响的实验研究[J]. 工程热物理学报, 2019, 40(3): 635-638. MA Qiang, WU Xiaomin, ZHU Yi. Experimental investigation of the effect of surface wettability on nucleate pool boiling[J]. Journal of Engineering Thermophysics, 2019, 40(3): 635-638.
[18] BALAKIN B V, DELOV M I, KOSINSKA A, et al. Heat transfer during transition to nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1101-1105.
[19] SURTAEV A S, PAVLENKO A N, KUZNETSOV D V, et al. Heat transfer and crisis phenomena at pool boiling of liquid nitrogen on the surfaces with capillary-porous coatings[J]. International Journal of Heat and Mass Transfer, 2017, 108: 146-155.
[1] 卜良桃,袁海涛. 纤维水泥砂浆与混凝土粘结性能双面剪切试验研究[J]. 山东大学学报(工学版), 2016, 46(4): 76-82.
[2] 冀翠莲, 韩吉田, 尹静, 陈常念, 任立波, 孔令健. 螺旋管内流动沸腾传热系数关联式拟合与误差分析[J]. 山东大学学报(工学版), 2014, 44(5): 83-87.
[3] 周海龙,申向东,薛慧君. 小龄期水泥土无侧限抗压强度试验研究[J]. 山东大学学报(工学版), 2014, 44(1): 75-79.
[4] 谭鲁志,韩吉田*,陈常念,孔令健,冀翠莲,逯国强. 卧式螺旋管临界热流密度的流体模化[J]. 山东大学学报(工学版), 2013, 43(3): 87-93.
[5] 张爱娟,高增丽,王卫伟,李成峰. 有机泡沫浸渍法制备多孔羟基磷灰石生物支架的研究[J]. 山东大学学报(工学版), 2012, 42(3): 105-109.
[6] 葛智1,王昊2,张堃1,李鹏承1. 塑料砂浆的性能研究[J]. 山东大学学报(工学版), 2012, 42(1): 106-108.
[7] 葛智1,王昊2*,郑丽1,毛洪录1. 废黏土砖粉混凝土的性能研究[J]. 山东大学学报(工学版), 2012, 42(1): 104-105.
[8] 王美,李和胜,李木森,田彬, . IIb型与Ib型金刚石热稳定性比较[J]. 山东大学学报(工学版), 2007, 37(6): 41-43 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!