山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (3): 88-95.doi: 10.6040/j.issn.1672-3961.0.2021.531
于洋1,石南2,高磊3,赵国浩3,张峰3
YU Yang1, SHI Nan2, GAO Lei3, ZHAO Guohao3, ZHANG Feng3
摘要: 基于12片不同跨径预应力混凝土空心板梁的抗剪承载力试验,针对板梁破坏模式、极限承载力等开展分析,研究预应力混凝土空心板梁的抗剪性能,总结已有空心板梁抗剪承载力计算方法并通过试验结果进行校验。分析混凝土和箍筋的抗剪承载力,提出基于斜裂缝水平投影的抗剪承载力计算公式。研究结果表明,各试验梁均表现为剪压破坏,梁端钢绞线产生滑移。当梁剪跨比增大时,极限荷载减小,而加载点位移增大。不同方法计算得到的试验梁安全评价和离散度均是JTG3362规范最大,Marí模型最小;提出的考虑斜裂缝水平投影长度的抗剪承载力预测模型,抗剪承载力试验结果与预测模型比值为1.10,实现对空心板梁极限抗剪承载力的更准确预测。
中图分类号:
[1] | NGUYEN T N H, TAN K H, KANDA T. Investigations on web-shear behavior of deep precast, prestressed concrete hollow core slabs[J]. Engineering Structures, 2019, 183: 579-593. |
[2] | BARAN E. Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs[J]. Engineering Structures, 2015, 98: 109-117. |
[3] | KANKERI P, PRAKASH S S. Experimental evaluation of bonded overlay and NSM GFRP bar strengthening on flexural behavior of precast prestressed hollow core slabs[J]. Engineering Structures, 2016, 120: 49-57. |
[4] | DERKPWSKI W, SURMA M. Prestressed hollow core slabs for topped slim floors: theory and research of the shear capacity[J]. Engineering Structures, 2021, 241: 112464. |
[5] | BRUNESI E, NASCIMBENE R. Numerical web-shear strength assessment of precast prestressed hollow core slab units[J]. Engineering Structures, 2015, 102: 13-30. |
[6] | 来金龙. 既有预应力混凝土空心板梁抗剪性能分析[D].哈尔滨:东北林业大学,2018. LAI Jinlong. Shear behavior analysis of existing prestressed concrete hollow s1ab beams[D]. Harbin: Northeast Forestry University, 2018. |
[7] | DI J, SUN Y, YU K, et al. Experimental investigation of shear performance of existing PC hollow slab[J]. Engineering Structures, 2020, 211: 110451. |
[8] | 张建仁,刘彬,王磊,等. 配有斜筋混凝土梁抗剪承载力计算与试验[J]. 应用力学学报, 2012, 29(6):746-751. ZhANG Jianren, LIU Bin, WANG Lei, et al. Shear capacity and experiment of reinforced concrete beam with diagonal reinforcements[J]. Chinese Journal of Applied Mechanics, 2012, 29(6):746-751. |
[9] | BRUNESI E, BOLOGNINI D, NASCIMBENE R. Evaluation of the shear capacity of precast-prestressed hollow core slabs: numerical and experimental comparisons[J]. Materials and Structures, 2015, 48(5):1503-1521. |
[10] | VECCHIO F J, COLLINS M P. The modified compression-field theory for reinforced concrete elements subjected to shear[J]. Journal of the American Concrete Institute, 1986, 83(2):219-231. |
[11] | LIM E, HWANG S J. Modeling of the strut-and-tie parameters of deep beams for shear strength prediction[J]. Engineering Structures, 2016,108: 104-112. |
[12] | KANI G. The riddle of shear failure and its solution[J]. Journal of the American Concrete Institute, 1964, 61(4): 441-468. |
[13] | MUTTONI A, RUIZ M F. Shear strength of members without transverse reinforcement as function of critical shear crack width[J]. ACI Structural Journal, 2008, 105(2): 163-172. |
[14] | YANG K H, ASHOUR A F. Load capacity of reinforced concrete continuous deep beams[J]. Journal of Structural Engineering, 2008, 134(6): 919-929. |
[15] | MANSOUR M, HSU T T C. Behaviour of reinforced concrete elements under cyclic shear. II: theoretical model[J]. Journal of Structural Engineering, 2015, 131(1): 54-65. |
[16] | ZHANG T, VISINTIN P, OEHLERS D J. Shear strength of RC beams without web reinforcement[J]. Australian Journal of Structural Engineering, 2016, 17(1): 87-96. |
[17] | 韩记明.超短超细钢纤维矩形截面梁抗剪性能研究[D].重庆:重庆交通大学,2013. HAN Jiming. Study on shear performance of rectangular section concrete beam reinforced by ultra-short ultra-fine steel fiber[D]. Chongqing: Chongqing Jiaotong University, 2013. |
[18] | MARDOOKHPOUR A R. Evaluation of codes and equation for prediction shear capacity in HSC beams without shear reinforcements[J]. World Journal of Engineering, 2012, 9(1):57-62. |
[19] | PARK M K, LEE D H, HAN S J, et al. Web-shear capacity of thick precast prestressed hollow-core slab units produced by extrusion method[J]. International Journal of Concrete Structures and Materials, 2019, 13(1): 1-14. |
[20] | YANG L. Design of prestressed hollow core slabs with reference to web shear failure[J]. Journal of Structural Engineering, 1994, 120(9): 2675-2696. |
[21] | 中华人民共和国交通运输部. 公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG 3362—2018[S]. 北京:人民交通出版社, 2018. |
[22] | 叶见曙. 结构设计原理[M]. 北京:人民交通出版社,2018. |
[23] | MARI A, BAIRAN J, CLADERA A, et al. Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams[J]. Structure and Infrastructure Engineering, 2014, 11: 1399-1419. |
[24] | AASHTO. AASHTO LRFD bridge design specifications[S]. Washington D C: American Association of State Highway and Transportation of Officials, 2017. |
[25] | American Concrete Institute. Building code requirements for structural concrete(ACI 318M-08)and commentary[S]. Farmington Hills: ACI Committee, 2008. |
[26] | 汪昕. 嵌入式碳纤维板条增强混凝土梁受弯与受剪承载力研究[D]. 南京:东南大学, 2006. WANG Xin. Study on Flexural and shear strengthening of RC beams with near-surface mounted FRP laminates[D]. Nanjing: Southeast University, 2006. |
[27] | 汪昕, 张继文. 嵌入式FRP抗剪增强梁斜裂缝水平投影长度计算[J]. 东南大学学报(自然科学版), 2008, 38(5): 779-783. WANG Xin, ZHANG Jiwen. Calculation of horizontal projection length of diagonal cracks in near-surface mounted FRP shear strengthened beams[J]. Journal of Southeast University(Natural Science Edition), 2008, 38(5):779-783. |
[28] | 肖光宏,江炳章. 考虑预应力度的部分预应力混凝土梁抗剪强度的试验研究[J]. 重庆交通学院学报, 1988, 7(3):74-87. XIAO Guanghong, JIANG Bingzhang. Experimental research on ultimate shear strength of partially prestressed concrete with considering degree of prestress[J]. Journal of Chongqing Jiaotong University, 1988, 7(3):74-87. |
[1] | 许英东,崔言继,朱志鑫,任晓倩,陈帅,张朋,付涛. 配置HTRB600E高强钢筋装配式圆形桥墩的抗震性能[J]. 山东大学学报 (工学版), 2023, 53(3): 104-112. |
[2] | 李连祥,李红波,韩刚,郭龙德,赵仕磊. 济南非饱和土基坑支护设计[J]. 山东大学学报 (工学版), 2023, 53(3): 41-49. |
[3] | 曹卫东,任宪富,娄术荣,张同国,侯宗良,张吉哲. 纤维增强型桥面防水层优化设计与性能[J]. 山东大学学报 (工学版), 2023, 53(3): 96-103. |
[4] | 李尧,李嘉评,韩宽. 单剪试验试样应力状态与破坏模式[J]. 山东大学学报 (工学版), 2022, 52(4): 201-209. |
[5] | 付涛,朱志鑫,孟凌霄,孙中华,朱经纬. 中空夹层预制装配式桥墩的抗震性能[J]. 山东大学学报 (工学版), 2022, 52(4): 191-200. |
[6] | 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79. |
[7] | 刘文杰,杨学英,张波,范志鑫,李成新,杨惠茗,李景龙. 含裂隙无腹筋梁的抗剪承载能力[J]. 山东大学学报 (工学版), 2022, 52(3): 42-50. |
[8] | 邓苗毅,闫启耀,王金山. 粗粒氯盐渍土路用性能试验研究[J]. 山东大学学报 (工学版), 2022, 52(1): 74-84. |
[9] | 张宏博,刘明朋,孙玉海,杨强,宋修广,李晓亮. 粉土基泡沫轻质土三轴力学特性[J]. 山东大学学报 (工学版), 2022, 52(1): 39-46. |
[10] | 田利,张来仪,王彦明,刘俊才. 台风作用下建筑结构的研究进展[J]. 山东大学学报 (工学版), 2022, 52(1): 28-38. |
[11] | 李军伟,徐飞,王兵,高阳. 混凝土不同骨料粒径对声发射检测的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 84-90. |
[12] | 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41. |
[13] | 宋修广,赵一民,张宏博,杨振宇,杨强. 加筋路堤下涵洞土压力分布规律及计算方法[J]. 山东大学学报 (工学版), 2021, 51(4): 43-53. |
[14] | 李晓亮,刘源,李玉鑫,江建宏,魏琨,张宏博. 砂土介质中废旧轮胎加筋条带拉拔特性[J]. 山东大学学报 (工学版), 2021, 51(4): 54-60. |
[15] | 周术明,颜东煌. 基于裂缝参数的钢筋混凝土预裂梁刚度试验研究[J]. 山东大学学报 (工学版), 2021, 51(1): 53-59. |
|