您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (1): 53-59.doi: 10.6040/j.issn.1672-3961.0.2020.403

• • 上一篇    

基于裂缝参数的钢筋混凝土预裂梁刚度试验研究

周术明1,2,颜东煌1*   

  1. 1. 长沙理工大学土木与建筑学院, 湖南 长沙 410114;2. 湖南城市学院, 湖南 益阳 413000
  • 发布日期:2021-03-01
  • 作者简介:周术明(1982— ),男,湖南益阳人,博士研究生,主要从事桥梁结构检测与监控等方面的工作. E-mail:799488568@qq.com. *通信作者简介:颜东煌(1961— ),男,湖南长沙人,教授,博士生导师,主要从事大跨度桥梁的施工控制理论与应用方面的工作. E-mail:yandonghuang@126.com
  • 基金资助:
    国家自然科学基金资助项目(51678068);长沙理工大学研究生科研创新资助项目(CX2016BS02)

Experimental study on stiffness of reinforced concrete pre-cracked beams based on crack parameters

ZHOU Shuming1,2, YAN Donghuang1*   

  1. 1. College of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, Hunan, China;
    2. Hunan City University, Yiyang 413000, Hunan, China
  • Published:2021-03-01

摘要: 为研究钢筋混凝土简支梁桥跨中开裂后的刚度特性,开展不同裂缝名义损伤比下跨中预裂梁的力学试验。试件为现浇钢筋混凝土预裂梁,考虑了跨中3种不同长度a(a=8、18和26 mm)的预制裂缝。试验研究8 m标准跨径混凝土简支梁不同荷载级别下跨中预裂梁抗弯刚度折减系数k随裂缝名义损伤比λ和裂缝张开度w的演化规律研究表明,不同试验工况下,k均随λw的增加而降低,k的降低幅度在裂缝长度小于钢筋保护层时变化较小,在裂缝长度接近钢筋高度时快速降低,而在高于钢筋位置后则降幅减缓在此基础上,提出跨中开裂钢筋混凝土简支梁桥抗弯刚度折减系数的计算公式研究结果为该类梁桥跨中开裂后刚度性能的准确预测与评估提供了依据

关键词: 桥梁工程, 钢筋混凝土梁, 刚度折减系数, 试验研究, 裂缝参数

Abstract: To research the stiffness characteristics of simply-supported reinforced concrete bridges after cracking in the mid-span, mechanical tests of pre-cracked in the mid-span beams with different nominal damage ratios were carried out. The specimens were cast-in-situ reinforced concrete pre-cracking beams. In the specimens, three different lengths(a=8、18 and 26 mm)of cracks in the mid-span were considered respectively. The evolutions of stiffness reduction coefficient k with nominal damage ratio λ and crack opening w under load of the 8 m standard span reinforced concrete pre-cracked beams were studied through experiments. It was showed that under different test conditions, k decreased with the increase of λ and w. The pre-cracked specimensk decreased little when the crack length was less than the thickness of the protective layer of reinforcement, decreased rapidly when the crack length was near the height of reinforcement. However, the decreased speed appears to fall back when the crack length was higher than the height of the reinforcement. On this basis, a formula for calculating the stiffness reduction coefficient of simply-supported reinforced concrete bridges after cracking in the mid-span was proposed. The effort of this paper could provide a basic for the accurately predicting and evaluating the stiffness characteristics of simply-supported reinforced concrete bridges after cracking.

Key words: bridge engineering, reinforced concrete beam, the stiffness reduction coefficient, experimental study, crack parameter

中图分类号: 

  • U446.3
[1] 李国豪. 桥梁结构稳定与振动[M]. 北京: 中国铁道出版社, 2003.
[2] LEE H P, NG T Y. Natural frequencies and modes for the flexural vibration of a cracked beam[J]. Applied Acoustics, 1994, 42(2): 151-163.
[3] KAKLAUSKAS G, GHABOUSSI J. Stress-strain relations for cracked tensile concrete from RC beam tests[J]. Journal of Structural Engineering, 2001, 127(1): 64-73.
[4] ISMAIL Z, KUAN K K, YEE K S, et al. Examining the trend in loss of flexural stiffness of simply supported RC beams with various crack severity using model updating[J]. Measurement, 2014, 50: 43-49.
[5] BENAKLI S, BOUAFIA Y, OUDJENE M, et al. A simplified and fast computational finite element model for the nonlinear load-displacement behavior of reinforced concrete structures[J]. Composite Structures, 2018, 194(15): 468-477.
[6] 周凌, 程华, 张鹏梁. 带裂缝钢筋混凝土梁振动特性变刚度模型分析[J]. 后勤工程学院学报, 2009, 25(2):5-8. ZHOU Ling, CHENG Hua, ZHANG Pengliang. Vibration characteristics analysis of RC beam with cracks based on variable rigidity model[J]. Journal of Logistical Engineering University, 2009, 25(2):5-8.
[7] 朱立烽. 裂后钢筋混凝土与预应力混凝土梁的刚度预测与评估[D]. 成都:西南交通大学, 2018. ZHU Lifeng. Prediction and assessment of the instantaneous stiffness for cracked reinforced and prestressed concrete beams[D]. Chengdu: Southwest Jiaotong University, 2018.
[8] 谭冬莲, 王浩, 王显张. 基于裂缝特征参数的在役混凝土梁桥抗弯刚度评估[J]. 上海应用技术学院学报(自然科学版), 2016, 16(4): 334-337. TAN Donglian, WANG Hao, WANG Xianzhang. Existing bridge beam flexural rigidity assessment based on crack characteristics[J]. Journal of Shanghai Institute of Technology(Natural Science), 2016, 16(4): 334-337.
[9] 李颖. 钢筋混凝土受弯构件裂纹发展规律研究[D]. 重庆: 重庆交通大学, 2009. LI Ying. Study on law of crack development of reinforced concrete flexural member[D]. Chongqing: Chongqing Jiaotong University, 2009.
[10] 叶见曙,张峰. 预应力混凝土连续箱梁开裂后的刚度退化模型[J]. 中国公路学报, 2007, 20(6): 67-72. YE Jianshu, ZHANG Feng. Stiffness degeneration model of prestressed concrete continuous box girder after cracking[J]. China Journal of Highway and Transport, 2007, 20(6): 67-72.
[11] 中华人民共和国住房与城乡建设部: 混凝土结构设计规范GB50010—2010[S].北京:中国建筑工业出版社, 2010.
[12] American Concrete Institute: Building Code Requirements for Structural Concrete and Commentary, ACI 318-11[S]. Farmington Hills Mich, USA:ACI, 2014.
[13] CHENG L, LI N, CHEN X F, et al. The influence of crack breathing and imbalance orientation angle on the characteristics of the critical speed of a cracked rotor[J]. Journal of Sound and Vibration, 2011, 330(9): 2031-2048.
[14] 陈兴达, 朱劲松. 开裂钢筋混凝土梁的车致振动研究[J]. 太原理工大学学报, 2019, 50(3):19-25. CHEN Xingda, ZHU Jinsong. Study on vehicle-induced vibration of cracked reinforced concrete beams[J]. Journal of Taiyuan University of Technology, 2019, 50(3):19-25.
[15] SLUYS L J, BORST R D. Failure in plain and reinforced concrete-an analysis of crack width and crack spacing[J]. International Journal of Solids and Structures, 1996, 33(20/22): 3257-3276.
[16] BARRIS C, TORRES L, VILANOVA I, et al. Experimental study on crack width and crack spacing for Glass-FRP reinforced concrete beams[J]. Engineering Structures, 2017, 131(15): 231-242.
[17] MALECKII T, MARZEC I, BOBINSKI J, et al. Effect of a characteristic length on crack spacing in a reinforced concrete bar under tension[J]. Mechanics Research Communications, 2007, 34(5/6): 460-465.
[18] TADA H, PARIS P C, IRWIN G R. The stress analysis of cracks handbook[M]. Del Research Corporation, Hellertown, 1973.
[19] GUDMUNDSON P. Eigenfrequency changes of structures due to cracks, notches or other geometrical changes[J]. Journal of the Mechanics and Physics of Solids, 1982, 30(30): 339-353.
[20] 中华人民共和国交通运输部: 公路桥梁承载能力检测评定规程JTGT J21—2011[S]. 北京:人民交通出版社, 2011.
[21] CARLONI C, SANTANDREA M, BAIETTI G. Influence of the width of the specimen on the fracture response of concrete notched beams[J]. Engineering Fracture Mechanics, 2019, 216: 106465.
[22] 何世钦, 赵仁豪, 商峰. 不同加载速率下混凝土剪力传递性能试验研究[J]. 混凝土, 2019, 356(6): 27-30. HE Shiqin, ZHAO Renhao, SHANG Feng. Experimental research of different loading rates on shear transfer behavior in concrete[J]. Concrete, 2019, 356(6): 27-30.
[23] SELLIER A, MILLARD A. A homogenized formulation to account for sliding of non-meshed reinforcements during the cracking of brittle matrix composites: Application to reinforced concrete[J]. Engineering Fracture Mechanics, 2019, 213: 182-196.
[1] 秦子鹏,田艳,李刚,马玉薇,刘乐,张金剑. BFRP层数对加固钢筋混凝土梁抗弯性能的影响[J]. 山东大学学报(工学版), 2017, 47(1): 76-83.
[2] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[3] 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83.
[4] 陈瑜,高英力. 公路面层脱硫石膏—粉煤灰混凝土试验研究与应用[J]. 山东大学学报(工学版), 2010, 40(6): 72-75.
[5] 王立鹏1,巩思锋2.

钢筋混凝土梁电化学锈蚀及受弯承载力试验研究

[J]. 山东大学学报(工学版), 2009, 39(2): 113-117.
[6] 王恩东 . 箱梁桥桥面铺装受力特性研究[J]. 山东大学学报(工学版), 2008, 38(2): 71-76 .
[7] 林彦,冯勇 . 铸钢空心球管节点的设计与研究[J]. 山东大学学报(工学版), 2006, 36(5): 77-81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!