1 |
WANG Tao , XUE Likun , BRIMBLECOMBE Peter , et al. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 2017, 575 (1): 1582- 1596.
|
2 |
中华人民共和国生态环境保护部.2017中国生态环境状况公报[R].北京:中华人民共和国生态环境保护部, 2018.
|
|
Ministry of Environmental Protection of the People's Republic of China. China environmental status bulletin 2017[R]. Beijing: Ministry of Environmental Protection of the People's Republic of China, 2018.
|
3 |
LI Shuangjin , YANG Ning . Prediction and analysis of O3 based on the arima model[J]. Agricultural Science & Technology, 2015, 16 (10): 2146- 2148.
|
4 |
杜云松, 罗彬, 陈建文, 等. 气温在成都地区臭氧预报的运用研究[J]. 环境科学与技术, 2017, 40 (增刊1): 329- 334.
|
|
DU Yunsong , LUO Bin , CHEN Jianwen , et al. Study on the application of air temperature in ozone forecast in Chengdu area[J]. Environmental Science & Technology, 2017, 40 (Suppl.1): 329- 334.
|
5 |
陈博, 李迎春, 夏振平. 基于BP神经网络预测林内PM2.5浓度[J]. 安徽农业科学, 2019, 47 (1): 107- 110.
|
|
CHEN Bo , LI Yingchun , XIA Zhenping . Prediction of PM2.5 concentration in forest based on BP artificial neural network[J]. Journal of Anhui Agricultural Sciences, 2019, 47 (1): 107- 110.
|
6 |
张栗粽, 王谨平, 刘贵松, 等. 面向金融数据的神经网络时间序列预测模型[J]. 计算机应用研究, 2018, 35 (9): 2632- 2637.
|
|
ZHANG Lizong , WANG Jinping , LIU Guisong , et al. Neural network time series prediction model for financial data[J]. Application Research of Computers, 2018, 35 (9): 2632- 2637.
|
7 |
段满珍, 陈光, 张林, 等. 动态随机有效停车泊位预测方法[J]. 重庆交通大学学报(自然科学版), 2018, 36 (6): 81- 86.
|
|
DUAN Manzhen , CHEN Guang , ZHANG Lin , et al. Prediction method of dynamic stochastic effective parking space[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 36 (6): 81- 86.
|
8 |
项丽萍, 杨红菊. 结合大数据流特征和改进SOM聚类的资源动态分配算法[J]. 计算机应用与软件, 2019, 36 (5): 262- 280.
|
|
XIANG Liping , YANG Hongju . Dynamic resource allocation algorithm based on big data stream characteristic and improved SOM clustering[J]. Computer Applications and Software, 2019, 36 (5): 262- 280.
|
9 |
金林, 李研. 几种相关系数辨析及其在R语言中的实现[J]. 统计与信息论坛, 2019, 34 (4): 3- 11.
|
|
JIN Lin , LI Yan . Discrimination of several correlation coefficients and their implementation in R software[J]. Statistics & Information Forum, 2019, 34 (4): 3- 11.
|
10 |
喻胜华, 龚尚花. 基于Lasso和支持向量机的粮食价格预测[J]. 湖南大学学报(社会科学版), 2016, 30 (1): 71- 72.
|
|
YU Shenghua , GONG Shanghua . A study on grain price prediction based on lasso and support vector machine[J]. Journal of Hunan University(Social Sciences), 2016, 30 (1): 71- 72.
|
11 |
董小刚, 刁亚静, 李慧玲, 等. 岭回归、LASSO回归和Adaptive-LASSO回归下的财政收入因素分析[J]. 吉林师范大学学报(自然科学版), 2018, 39 (2): 45- 53.
|
|
DONG Xiaogang , DIAO Yajing , LI Huiling , et al. The analysis of the fiscal revenue factors under the ridge regression, LASSO regression and the Adaptive-LASSO regression[J]. Jilin Normal University Journal(Natural Science Edition), 2018, 39 (2): 45- 53.
|
12 |
丁天一, 张旻. 一种SOFM网络的二阶段聚类算法[J]. 小型微型计算机系统, 2018, 39 (2): 329- 333.
|
|
DING Tianyi , ZHANG Min . Two-phase clustering algorithm based on self-organizing feature maps[J]. Journal of Chinese Computer Systems, 2018, 39 (2): 329- 333.
|
13 |
刘子英, 朱琛磊. 基于Elman神经网络模型的IGBT寿命预测[J]. 半导体技术, 2019, 44 (5): 395- 400.
|
|
LIU Ziying , ZHU Chenlei . IGBT life prediction based on Elman neural network model[J]. Semiconductor Technology, 2019, 44 (5): 395- 400.
|
14 |
李志新, 赖志琴, 龙云墨. 基于GA-Elman神经网络的参考作物需水量预测[J]. 节水灌溉, 2019, 44 (2): 117- 120.
|
|
LI Zhixin , LAI Zhiqin , LONG Yunmo . Prediction of water demand for reference crops based on GA-Elman neural network model[J]. Water Saving Irrigation, 2019, 44 (2): 117- 120.
|
15 |
金百锁, 李炽坤. 基于稳健S估计的长江流域气象异常值检测[J]. 中国科学技术大学学报, 2018, 48 (11): 869- 876.
|
|
JIN Baisuo , LI Chikun . Outlier detection of Yangtze River basin meteorological data based on robust S-estimator[J]. Journal of University of Science and Technology of China, 2018, 48 (11): 869- 876.
|
16 |
程志炜, 陈财森, 朱连军, 等. 基于Pearson相关系数的Cache计时模板攻击方法[J]. 计算机工程, 2019, 45 (7): 159- 163.
|
|
CHENG Zhiwei , CHEN Caisen , ZHU Lianjun , et al. Cache timing template attack method based on pearson correlation coefficient[J]. Computer Engineering, 2019, 45 (7): 159- 163.
|
17 |
ZHANG Zheng , XU Yong , YANG Jian , et al. A survey of sparse representation:algorithms and applications[J]. IEEE Access, 2015, 3, 490- 530.
|
18 |
高永, 郝晓丽, 吕进来. 互信息熵和Prewitt差测度的Lasso模型关键帧提取[J]. 中国科技论文, 2017, 12 (20): 2342- 2348.
|
|
GAO Yong , HAO Xiaoli , LÜ Jinlai . Lasso model key frame extraction for mutual information entropy and Prewitt difference measure[J]. China Sciencepaper, 2017, 12 (20): 2342- 2348.
|
19 |
邵惠芳, 赵昕宇, 许自成, 等. 基于SOFM网络的烤烟感官质量聚类模式分析[J]. 中国烟草学报, 2016, 22 (1): 13- 23.
|
|
SHAO Huifang , ZHAO Xinyu , XU Zicheng , et al. Clustering pattern analysis of sensory quality in flue-cured tobacco based on SOFM network[J]. Acta Tabacaria Sinica, 2016, 22 (1): 13- 23.
|
20 |
片坤, 徐晓钟, 张益铭. 一种改进的组合SOFM-SVR股票价格预测模型[J]. 计算机应用与软件, 2010, 27 (5): 172- 175.
|
|
PIAN Kun , XU Xiaozhong , ZHANG Yiming . An improved combined SOFM-SVR model for stock price prediction[J]. Computer Applications and Software, 2010, 27 (5): 172- 175.
|