1 |
YANG J, SHE D, LAI Y K, et al. Weakly supervised coupled networks for visual sentiment analysis[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City, USA: IEEE Press, 2018: 7584-7592.
|
2 |
JIN X, GALLAGHER A, CAO L, et al. The wisdom of social multimedia: using flickr for prediction and forecast[C]//Proceedings of the 2010 International Conference on Multimedea 2010.Firenze, Italy: ACM Press, 2010: 1235-1244.
|
3 |
YUAN J, MCDONOUGH S, YOU Q, et al. Sentribute: image sentiment analysis from a mid-level perspective[C]//Proceedings of the 2013 International Workshop on Issues of Sentiment Discovery and Opinion Mining. Chicago, USA: ACM Press, 2013: 1-8.
|
4 |
MACHAJDIK J, HANBURY A. Affective image classification using features inspired by psychology and art theory[C]//Proceedings of the 18th ACM international conference on Multimedia. Firenze, Italy: ACM Press, 2010: 83-92.
|
5 |
CHEN M, ZHANG L, ALLEBACH J P. Learning deep features for image emotion classification[C]//Procee-dings of the 2015 IEEE International Conference on Image Processing. Piscataway, USA: IEEE Press, 2015: 4491-4495.
|
6 |
YOU Q, YANG J, YANG J, et al. Building a large scale dataset for image emotion recognition: the fine print and the benchmark[C]//Proceedings of the 2016 Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, USA: AAAI Press, 2016: 308-314.
|
7 |
YANG J , SHE D , SUN M , et al. Visual sentiment prediction based on automatic discovery of affective regions[J]. IEEE Transactions on Multimedia, 2018, 20 (9): 2513- 2525.
|
8 |
SIERSDORFER S, MINACK E, DENG F, et al. Analyzing and predicting sentiment of images on the social web[C]//Proceedings of the 18th ACM international conference on Multimedia. Firenze, Italy: ACM Press, 2010: 715-718.
|
9 |
BORTH D, JI R, CHEN T, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]//Proceedings of the 21st ACM international conference on Multimedia. Barcelona, Spain: ACM Press, 2013(9): 223-232.
|
10 |
CHEN T , BORTH D , DARRELL T , et al. DeepSentiBank: visual sentiment concept classification with deep convolutional neural networks[J]. OALIB Journal-Computer Science, 2014, 1- 6.
|
11 |
YOU Q, YANG J, YANG J, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]// Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, USA: AAAI Press, 2015: 381-388.
|
12 |
SUN M, YANG J, WANG K, et al. Discovering affective regions in deep convolutional neural networks for visual sentiment prediction[C]// 2016 IEEE International Conference on Multimedia and Expo (ICME). Seattle, USA: IEEE Press, 2016: 1-6.
|
13 |
LI B, XIONG W, HU W, et al. Context-aware affective images classification based on bilayer sparse repres-entation[C]// Proceedings of the 20th ACM international conference on Multimedia. Nara, Japan: ACM Press, 2012: 721-724.
|
14 |
ITTI L , KOCH C . Computational modelling of visual attention[J]. Nature reviews neuroscience, 2001, 2 (3): 194- 195.
|
15 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in neural information processing systems. California, USA: MIT Press, 2017: 5998-6008.
|
16 |
LI L, TANG S, DDENG L, et al. Image caption with global-local attention[C]//Thirty-First AAAI Conference on Artificial Intelligence 2017. San Francisco, USA: AAAI Press.
|
17 |
MNIN V, HEESS N, GRAVES A. Recurrent models of visual attention[C]//Advances in Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014: 2204-2212.
|
18 |
CHEN L C, YANG Y, WANG J, et al. Attention to scale: scale-aware semantic image segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, USA: IEEE Press, 2016: 3640-3649.
|
19 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA.: IEEE Press, 2016: 770-778.
|
20 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2019-02-01]. http://arxiv.org/abs/1410.8586v.
|