Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (1): 91-100.doi: 10.6040/j.issn.1672-3961.0.2018.232

• Civil Engineering • Previous Articles     Next Articles

The technology of spanning deep pond of the urban expressway nearby paralleling high-speed railway

Shulei JIANG1(),Shifeng YANG2,Linghang YANG1,Wenming SHI1,Fuqing ZOU1,Qinghong SHAN1   

  1. 1. Mega Shield Construction Engineering CO., LTD, China Railway 14th Bureau Group, Nanjing 210000, Jiangsu, China
    2. Tunnel Engineering CO., LTD, China Railway 14th Bureau Group, Jinan 250001, Shandong, China
  • Received:2018-06-06 Online:2019-02-01 Published:2019-03-01

Abstract:

A deep pond section of a city expressway with small interval parallel to the Beijing-Shanghai High-Speed Railway was taken as engineering background. The impact of traditional high embankment on the Beijing-Shanghai High-Speed Railway was analyzed by numerical method from the following four aspects: horizontal displacement and settlement of bridge piers, axial force and skin friction of piles. The results indicated that horizontal displacement of the Beijing-Shanghai High-speed Railway caused by high embankment was far more than the limit, which would cause serious damage to its viaduct. So a spanning technology using low bridges was put forward, which included pre-stressed concrete slab beam, continuous bridge deck erected as simple-supported, gravity abutment, bored pile foundation and 4 m pier. Displacement caused by the low bridge was far less than the limit value. This technology would not affect the normal operation of the Beijing-Shanghai High-speed Railway. Subsequent monitoring results also showed that the low bridge was a reliable technology to spanning deep pond with small interval paralleling to high-speed railway.

Key words: road engineering, spanning technology by low bridge, Beijing-Shanghai High Speed Railway, nearby paralleling, high embankment

CLC Number: 

  • U416.1

Fig.1

Schematic diagram of basic position"

Fig.2

High embankment filling program"

Fig.3

Simulating model and mesh generation"

Table 1

Parameters of model material"

材料名称 体积模量/MPa 剪切模量/MPa 粘聚力/kPa 内摩擦角/(°) 密度/(kg·m-3) 厚度/m
路基填土 28.57 13.95 1.75 32 1 780 6.5
①杂填土 14.38 9.90 23.09 9 1 800 2.0
③ 2粉质粘土 36.76 14.10 26.63 11 1 820 2.0
③ 3粉土 34.13 20.48 7.64 28 1 780 2.0
④ 2粉砂 60.70 26.41 5.81 29 1 830 7.0
⑤粉质粘土 22.07 11.99 9.62 19 1 820 8.0
⑥ 2粉质粘土 27.75 12.81 14.18 24 1 830 8.0
⑦ 2粉土夹粉粘 39.02 20.12 11.19 25 1 820 10.0
⑦ 3粉质粘土 25.83 12.62 18.05 13 1 810 7.0
⑧ 2粉砂夹粉土 65.16 23.34 7.85 28 1 840 9.0
⑨ 2粉质粘土 32.59 13.33 22.86 11 1 890 9.0
⑩粉细砂夹粉土 65.44 25.09 5.74 28 1 860 6.0
钢筋混凝土结构 18 333 13 750 2 400

Table 2

External force table at the top of cap"

荷载类型 Px/
kN
Py/
kN
Pz/
kN
Mx/
(kN·m)
My/
(kN·m)
Mz/
(kN·m)
-48.2 0 -2 411.8 -769.4 0 0

Fig.4

State of horizontal original stress"

Fig.5

State of horizontal stress(roadbed fill)"

Fig.6

State of horizontal stress (expressway operation)"

Fig.7

State of vertical original stress"

Fig.8

State of vertical stress(roadbed fill)"

Fig.9

State of vertical stress(expressway operation)"

Fig.10

Displacement nephogram of high-speed railway foundation after embankment filling"

Fig.11

Settlement nephogram of high-speed railway foundation after embankment filling"

Fig.12

Displacement nephogram of high-speed railway foundation after operation"

Fig.13

Settlement nephogram of high-speed railway foundation after operation"

Fig.14

Settlement of different positions on the top of the cap"

Fig.15

Geometric relation of piers rotation"

Table 3

Summary of horizontal displacement of piers"

扰动因素 最大永久水平位移/mm 最大永久水平位移+弹性横向位移/mm
路基填筑 -7.55 -8.43
承台转动 -8.74 -10.41
横向荷载 -4.94
水平位移和 -16.29 -23.78

Fig.16

Low bridge program of spaning deep pond"

Fig.17

Displacement nephogram of high-speed railway foundation after low bridge construction"

Fig.18

Settlement nephogram of high-speed railway foundation after low bridge construction"

Fig.19

Displacement nephogram of high-speed railway foundation after expressway operation"

Fig.20

Settlement nephogram of high-speed railway foundation after expressway operation"

Table 4

Summary of horizontal displacement of piers"

扰动因素 最大永久水平位移/mm 最大永久水平位移+弹性横向位移/mm
矮桥施工 -1.00 -1.03
承台转动 -0.44 -0.48
横向荷载 -4.94
水平位移和 -1.44 -6.45

Fig.21

Photo of low bridge in construction site"

Table 5

Warning value s of monitoring"

监测项目 警戒值/mm 累计变化量
次变化量 日变化量
预警值 报警值
桥墩水平位移 1.0 1.0 2.0 3.0
桥墩沉降 1.0 1.0 2.0 5.0
相邻承台差异沉降 1.0 1.0 1.0 2.0

Fig.22

Settlement curve of pier"

Fig.23

Differential settlement curve of adjacent piers"

Fig.24

Horizontal displacement curve of pier"

1 国家铁路局.中国高速铁路[EB/OL]. (2016-12-25)[2018-3-12]. http://www.nra.gov.cn/ztzl/hyjc/gstl_/.
2 刘光秀. 分级填筑过程中软土路基稳定性失效的演化机制[J]. 价值工程, 2014, 33 (20): 104- 106.
LIU Guangxiu . The evolution mechanism of stability invalidation for the soft-clay ground during the stage construction[J]. Value Engineering, 2014, 33 (20): 104- 106.
3 赵明华, 刘煜, 曹文贵. 软土路基沉降发展规律及其预测[J]. 中南大学学报(自然科学版), 2004, 35 (1): 157- 161.
doi: 10.3969/j.issn.1672-7207.2004.01.031
ZHAO Minghua , LIU Yu , CAO Wengui . The developing regularity and forecasting of settlement in soft clay roadbed[J]. Journal of Central South University (Natural Science), 2004, 35 (1): 157- 161.
doi: 10.3969/j.issn.1672-7207.2004.01.031
4 龙海涛, 李天斌, 孟陆波, 等. 高填方软土路基快速填筑沉降监测规律及FLAC~(3D)模拟[J]. 四川建筑科学研究, 2012, 38 (4): 156- 159.
doi: 10.3969/j.issn.1008-1933.2012.04.042
LONG Haitao , LI Tianbin , MENG Lubo , et al. The settlement monitoring regulation of fast-filling high refilled soft clay and the FLAC3D simulation[J]. Sichuan Building Science, 2012, 38 (4): 156- 159.
doi: 10.3969/j.issn.1008-1933.2012.04.042
5 冯学钢. 高填方路基沉降处治灌浆技术的工程实践与认识[J]. 岩石力学与工程学报, 2006, 25 (2): 334- 339.
doi: 10.3321/j.issn:1000-6915.2006.02.019
FENG Xuegang . Practice and understanding of grouting technique in treatment of highway subgrade settlement[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (2): 334- 339.
doi: 10.3321/j.issn:1000-6915.2006.02.019
6 陈晓燕, 张宏博, 宋修广. 湖相软土区路基填筑引起的地基沉降特性研究[J]. 公路与汽运, 2009, (1): 84- 88.
doi: 10.3969/j.issn.1671-2668.2009.01.028
CHEN Xiaoyan , ZHANG Hongbo , SONG Xiuguang . Study on foundation settlement induced by roadbed filling in lake facie soft soil region[J]. Highways & Automotive Applications, 2009, (1): 84- 88.
doi: 10.3969/j.issn.1671-2668.2009.01.028
7 王洪德, 张立漫. 软土路基分级填筑过程地表沉降规律分析[J]. 辽宁工程技术大学学报(自然科学版), 2011, 30 (6): 870- 874.
WANG Hongde , ZHANG Liman . Ground settlement analysis on the process of stage-filling for soft clay roadbed[J]. Journal of Liaoning Technical University(Natural Science), 2011, 30 (6): 870- 874.
8 蔡国军, 刘松玉. 软基上桥头路基填筑对桥台桩的影响研究综述[J]. 岩石力学与工程学, 2004, 23 (12): 2072- 2077.
doi: 10.3321/j.issn:1000-6915.2004.12.024
CAI Guojun , LIU Songyu . Review on lateral deformation effects of embankment on piled bridge abutments on soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (12): 2072- 2077.
doi: 10.3321/j.issn:1000-6915.2004.12.024
9 杨泉, 高柏松, 李井元, 等. 新建线临近既有无砟高速铁路路基施工方案研究[J]. 高速铁路技术, 2016, 7 (2): 15- 19.
doi: 10.3969/j.issn.1674-8247.2016.02.004
YANG Quan , GAO Baisong , LI Jingyuan , et al. Research on subgrade construction scheme of newly built railway close to ballastless track high-speed railway[J]. High Speed Railway Technology, 2016, 7 (2): 15- 19.
doi: 10.3969/j.issn.1674-8247.2016.02.004
10 吴立坚, 郑甲佳, 邓捷. 高液限土路基的沉降变形规律[J]. 岩土力学, 2013, 34 (增刊2): 351- 355.
WU Lijian , ZHENG Jiajia , DENG Jie . Settlement law of high liquid limit soil embankment[J]. Rock and Soil Mechanics, 2013, 34 (Suppl.2): 351- 355.
11 国家铁路局,高速铁路设计规范: TB-10621—2014[S].北京:中国铁道出版社, 2014.
12 中华人民共和国交通运输部,公路路基设计规范: JTG D30—2015[S].北京:人民交通出版社, 2015.
13 周小文, 陈凌伟, 程展林, 等. 软基路堤施工稳定性控制标准研究[J]. 岩土力学, 2016, 37 (9): 2631- 2635.
ZHOU Xiaowen , CHEN Lingwei , CHENG Zhanlin , et al. Stability controlling standard for embankment construction on soft soil ground[J]. Rock and Soil Mechanics, 2016, 37 (9): 2631- 2635.
14 刘奉银, 赵然, 谢定义, 等. 黄土高填方路堤沉降分析[J]. 长安大学学报(自然科学版), 2003, 23 (6): 23- 28.
doi: 10.3321/j.issn:1671-8879.2003.06.007
LIU Fengyin , ZHAO Ran , XIE Dingyi , et al. Settlement of loess-filled highway embankment[J]. Journal of Chang'an University (Natural Science), 2003, 23 (6): 23- 28.
doi: 10.3321/j.issn:1671-8879.2003.06.007
15 容耀华. 某高填方软土路基特殊路段处治方案比选[J]. 公路, 2006, (4): 155- 159.
doi: 10.3969/j.issn.0451-0712.2006.04.030
RONG Yaohua . Comparison and selection of treatment schemes for a certain high embankment soft soil subgrade[J]. Highway, 2006, (4): 155- 159.
doi: 10.3969/j.issn.0451-0712.2006.04.030
16 韩宗良. 公路高填方路基沉降变形研究[J]. 低碳世界, 2016, (18): 194- 195.
HAN Zongliang . Study on settlement and deformation of highway high fill roadbed[J]. Low Carbon World, 2016, (18): 194- 195.
17 张丙印, 温彦锋, 朱本珍, 等. 土工构筑物和边坡工程发展综述:作用机理与数值模拟方法[J]. 土木工程学报, 2016, 49 (8): 1- 15, 35.
ZHANG Bingyin , WEN Yanfeng , ZHU Benzhen , et al. Action mechanism and numerical simulation methods of soil structures and slope engineering: the state-of-the-art[J]. China Civil Engineering Journal, 2016, 49 (8): 1- 15, 35.
18 徐会杰, 彭华, 徐希磊, 等. 盾构下穿城际客运专线引起变形的数值分析[J]. 都市快轨交通, 2013, 26 (6): 68- 72.
XU Huijie , PENG Hua , XU Xilei , et al. Numerical analysis of ground deformations caused by shield tunneling under-crossing beijing-tianjin intercity passenger dedicated railway[J]. Urban Rapid Rail Transit, 2013, 26 (6): 68- 72.
19 陈海丰, 袁大军, 王飞, 等. 软弱地层地铁盾构下穿高铁的安全控制技术研究[J]. 土木工程学报, 2015, 48 (增刊1): 256- 260.
CHEN Haifeng , YUAN Dajun , WANG Fei , et al. Study on safe control of metro shield underpassing high-speed railway in weak stratum[J]. China Civil Engineering Journal, 2015, 48 (Suppl.1): 256- 260.
20 徐干成, 李成学, 王后裕, 等. 地铁盾构隧道下穿京津城际高速铁路影响分析[J]. 岩土力学, 2009, 30 (增刊2): 269- 272, 276.
XU Gancheng , LI Chengxue , WANG Houyu , et al. Analysis of influence of metro shield tunneling crossing underneath high speed railway[J]. Rock and Soil Mechanics, 2009, 30 (Suppl.2): 269- 272, 276.
21 彭文斌. FLAC 3D实用教程[M]. 北京: 机械工业出版社, 2008.
22 周宏益. 碎石土高填方填筑体变形数值模拟[J]. 土工基础, 2010, 24 (3): 39- 42.
doi: 10.3969/j.issn.1004-3152.2010.03.014
ZHOU Hongyi . Numerical simulation study of deformation of gravel soil high embankment[J]. Soil Engineering and Foundation, 2010, 24 (3): 39- 42.
doi: 10.3969/j.issn.1004-3152.2010.03.014
[1] WANG Zhongxiao, CUI Xinzhuang, CUI Sheqiang, ZHANG Lei, CHE Huaqiao, SU Junwei. The influence of soil-cement pile deterioration and modification in salt-water area on road composite foundation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 69-77.
[2] GUO Dedong, ZHANG Shengtao, LI Jin, ZHANG Long, ZHANG Xibin. Migration behavior of reclaimed mineral aggregate in process of central plant hot recycling [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 46-52.
[3] CUI Xinzhuang, HUANG Dan, LIU Lei, LAN Riyan, LYU Haibo, ZHAO Yanlin, CAO Weidong, CHANG Chengli. A review of mechanics of asphalt pavement disease [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 68-87.
[4] YAO Zhanyong, ZHANG Hao, SHANG Qingsen, GONG Benhui, LIU Zhihang, WANG Xugang. Properties of cement stabilized weathered granite material under the influence of soluble salt [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 85-93.
[5] GUO De-dong1,2, SHA Ai-min3. Techniques for snow-melting and deiced based on  microwave and magnet coupling effect [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 92-97.
[6] CUI Xin-zhuang,JIN Qing . The dynamic response of saturated asphalt pavement under wheel loads [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 19-24 .
[7] CUI Xin-zhuang,YAO Zhan-yong,SHANG Qing-sen . The application of dynamic compaction to the reconstruction of old road to expressway and its generalization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 53-56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[2] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[3] Yue Khing Toh1, XIAO Wendong2, XIE Lihua1. Wireless sensor network for distributed target tracking: practices via real test bed development[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 50 -56 .
[4] SUN Weiwei, WANG Yuzhen. Finite gain stabilization of singlemachine infinite bus system subject to saturation[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 69 -76 .
[5] SUN Yu-li,LI De-fa,ZUO Dun-wen,QI mei . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 19 -23 .
[6] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[7] XIA Bin,ZHANG Lian-jun . Energy comparison-based TOA estimation algorithm for the DS-CDMA UWB system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 70 -73 .
[8] HU Tian-liang,LI Peng,ZHANG Cheng-rui,ZUO Yi . Design of a QEP decode counter based on VHDL[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 10 -13 .
[9] BO De-Yun, ZHANG Dao-Jiang. Adaptive spectral clustering algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 22 -26 .
[10] YU Hai-bo,LI Yu,YU Tian,LEI Hong . Influence of the dimensions of W-band folded waveguide slow-wave system on its cold characteristics[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 90 -94 .