Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (2): 100-107.doi: 10.6040/j.issn.1672-3961.0.2019.424
• Machine Learning & Data Mining • Previous Articles Next Articles
Yunyang YAN1,2,3(),Chenxi DU1,2,Yian LIU2,Shangbing GAO1
CLC Number:
1 | HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704.04861, 2017. https://arxiv.org/abs/1704.04861. |
2 | CHENG Yu, WANG Duo, ZHOU Pan, et al. A survey of model compression and acceleration for deep neural networks[J]. arXiv preprint arXiv: 1710.09282, 2017. https://arxiv.org/abs/1710.09282. |
3 | HAN Song, MAO Huizi, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding[J]. arXiv preprint arXiv: 1510.00149, 2015. https://arxiv.org/abs/1510.00149. |
4 | LUO Ping, ZHU Zhenyao, LIU Ziwei, et al. Face model compression by distilling knowledge from neurons[C]//Proceedings of 30th AAAI Conference on Artificial Intelligence. Menlo Park, USA: Association for the Advancement of Artificial Intelligence, 2016: 3560-3566. |
5 | JADERBERG M, VEDALDI A, ZISSERMAN A. Speeding up convolutional neural networks with low rank expansions[J]. arXiv preprint arXiv: 1405.3866, 2014. https://arxiv.org/abs/1405.3866. |
6 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Computer Society, 2016: 2818-2826. |
7 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Computer Society, 2017: 1800-1807. |
8 | ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Computer Society, 2018: 6848-6856. |
9 | CHEN Liangchieh, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv: 1706.05587, 2017. https://arxiv.org/abs/1706.05587. |
10 | DUMOULIN V, VISIN F. A guide to convolution arithmetic for deep learning[J]. arXiv preprint arXiv: 1603.07285, 2016. https://arxiv.org/abs/1603.07285. |
11 | WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Computer Society, 2016: 4724-4732. |
12 | CAO Xudong. A practical theory for designing very deep convolutional neural network[R/OL].[2018-08-01]. https://www.kaggle.com/c/datasciencebowl/discussion/13166. |
13 | YU Fisher, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015. https://arxiv.org/abs/1511.07122. |
14 | WANG Panqu, CHEN Pengfei, YUAN Ye, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Nevada, USA: IEEE Computer Society, 2018: 1451-1460. |
15 | CHEN Liangchieh, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[J]. arXiv preprint arXiv: 1802.02611, 2018. https://arxiv.org/abs/1802.02611 |
16 | REDMON J, FARHADI A. Yolo9000: better, faster, stronger[C]//Computer Vision and Pattern Recognition. Washington, USA: IEEE Computer Society, 2017: 6517-6525. |
17 | SHEN Zhiqiang, LIU Zhuang, LI Jianguo, et al. Dsod: learning deeply supervised object detectors from scratch[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italia: IEEE Computer Society, 2017: 1919-1927. |
18 | WANG R J, LI Xiang, LING C X. Pelee: a real-time object detection system on mobile devices[C]//Advances in Neural Information Processing Systems. Montreal, Canada: Neural Information Processing Sys-tems Foundation, Inc., 2018: 1963-1972. |
19 | LI Yuxi, LI Jiuwei, LIN Weiyao, et al. Tiny-dsod: lightweight object detection for resource-restricted usages[J]. arXiv preprint arXiv: 1807.11013, 2018. https://arxiv.org/abs/1807.11013. |
20 | ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Computer Society, 2018: 8697-8710. |
[1] | Shengnan ZHANG,Lei WANG,Chunhong CHANG,Benli HAO. Image denoising based on 3D shearlet transform and BM4D [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 83-90. |
[2] | Longmao HU,Xuegang HU. Identification of the same product feature based on multi-dimension similarity and sentiment word expansion [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 50-59. |
[3] | Yanping CHEN,Li FENG,Yongbin QIN,Ruizhang HUANG. A syntactic element recognition method based on deep neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 44-49. |
[4] | Wei YAN,Damin ZHANG,Huijuan ZHANG,Ziyun XI,Zhongyun CHEN. Improved bird swarm algorithms based on mixed decision making [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 34-43. |
[5] | Shiqi SONG,Yan PIAO,Zexin JIANG. Vehicle classification and tracking for complex scenes based on improved YOLOv3 [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 27-33. |
[6] | Ningning CHEN,Jianwei ZHAO,Zhenghua ZHOU. Visual tracking algorithm based on verifying networks [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 17-26. |
[7] | Yuenan ZHAO,Guiyou CHEN,Chen SUN,Ning LU,Liwei LIAO. Risk assessment method based on spatial hidden danger distribution and motion intention analysis [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 28-34. |
[8] | Jialin SU,Yuanzhuo WANG,Xiaolong JIN,Xueqi CHENG. Entity alignment method based on adaptive attribute selection [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 14-20. |
[9] | Guoyong CAI,Qiang LIN,Kaiqi REN. Cross-domain text sentiment classification based on domain-adversarialnetwork and BERT [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 1-7,20. |
[10] | Yuanxi YAO. Analysis of wind power convergence trend quantitation based on sub-scene reconstruction [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 86-92. |
[11] | Ji ZHANG,Cui JIN,Hongyuan WANG,Shoubing CHEN. Pedestrian recognition based on singular value decomposition pedestrian alignment network [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 91-97. |
[12] | Junmei YUE,Dongmei ZHANG. Lightweight self-adaptive CSI-based positioning algorithm in underground mine [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 112-118. |
[13] | Zongtang ZHANG,Sen WANG,Shilin SUN. An ensemble learning algorithm for unbalanced data classification [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 8-13. |
[14] | Xindi CHEN,Tianrui LI,Huanhuan YANG. Visualization of interactive ThemeRiver based on time-series data [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 29-35, 43. |
[15] | Jinchao HUANG. Object tracking algorithm based on deep residual features and entropy energy optimization [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 14-23. |
|