1 |
HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704.04861, 2017. https://arxiv.org/abs/1704.04861.
|
2 |
CHENG Yu, WANG Duo, ZHOU Pan, et al. A survey of model compression and acceleration for deep neural networks[J]. arXiv preprint arXiv: 1710.09282, 2017. https://arxiv.org/abs/1710.09282.
|
3 |
HAN Song, MAO Huizi, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding[J]. arXiv preprint arXiv: 1510.00149, 2015. https://arxiv.org/abs/1510.00149.
|
4 |
LUO Ping, ZHU Zhenyao, LIU Ziwei, et al. Face model compression by distilling knowledge from neurons[C]//Proceedings of 30th AAAI Conference on Artificial Intelligence. Menlo Park, USA: Association for the Advancement of Artificial Intelligence, 2016: 3560-3566.
|
5 |
JADERBERG M, VEDALDI A, ZISSERMAN A. Speeding up convolutional neural networks with low rank expansions[J]. arXiv preprint arXiv: 1405.3866, 2014. https://arxiv.org/abs/1405.3866.
|
6 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Computer Society, 2016: 2818-2826.
|
7 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Computer Society, 2017: 1800-1807.
|
8 |
ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Computer Society, 2018: 6848-6856.
|
9 |
CHEN Liangchieh, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv: 1706.05587, 2017. https://arxiv.org/abs/1706.05587.
|
10 |
DUMOULIN V, VISIN F. A guide to convolution arithmetic for deep learning[J]. arXiv preprint arXiv: 1603.07285, 2016. https://arxiv.org/abs/1603.07285.
|
11 |
WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Computer Society, 2016: 4724-4732.
|
12 |
CAO Xudong. A practical theory for designing very deep convolutional neural network[R/OL].[2018-08-01]. https://www.kaggle.com/c/datasciencebowl/discussion/13166.
|
13 |
YU Fisher, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015. https://arxiv.org/abs/1511.07122.
|
14 |
WANG Panqu, CHEN Pengfei, YUAN Ye, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Nevada, USA: IEEE Computer Society, 2018: 1451-1460.
|
15 |
CHEN Liangchieh, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[J]. arXiv preprint arXiv: 1802.02611, 2018. https://arxiv.org/abs/1802.02611
|
16 |
REDMON J, FARHADI A. Yolo9000: better, faster, stronger[C]//Computer Vision and Pattern Recognition. Washington, USA: IEEE Computer Society, 2017: 6517-6525.
|
17 |
SHEN Zhiqiang, LIU Zhuang, LI Jianguo, et al. Dsod: learning deeply supervised object detectors from scratch[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italia: IEEE Computer Society, 2017: 1919-1927.
|
18 |
WANG R J, LI Xiang, LING C X. Pelee: a real-time object detection system on mobile devices[C]//Advances in Neural Information Processing Systems. Montreal, Canada: Neural Information Processing Sys-tems Foundation, Inc., 2018: 1963-1972.
|
19 |
LI Yuxi, LI Jiuwei, LIN Weiyao, et al. Tiny-dsod: lightweight object detection for resource-restricted usages[J]. arXiv preprint arXiv: 1807.11013, 2018. https://arxiv.org/abs/1807.11013.
|
20 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Computer Society, 2018: 8697-8710.
|