Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (2): 108-117.doi: 10.6040/j.issn.1672-3961.0.2019.419
• Machine Learning & Data Mining • Previous Articles Next Articles
Chunyang LI(),Nan LI*(),Tao FENG,Zhuhe WANG,Jingkai MA
CLC Number:
1 | MADAIN M, AL-MOSAIDEN A, AL-KHASSAWENEH M. Fault diagnosis in vehicle engines using sound recognition techniques[C]// Proceedings of the 2010 IEEE Conference on Electro/Information Technology. New York, USA: IEEE, 2010: 1-4. |
2 | WANG Y, NEVES L, METZE F. Audio-based multi-media event detection using deep recurrent neural networks[C]//the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York, USA: IEEE, 2016: 2742-2746. |
3 | PARASCANDOLO G, HUTTUNEN H, VIRTANEN T. Recurrent neural networks for polyphonic sound event detection in real life recordings[C]//the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). NewYork, USA: IEEE, 2016: 6440-6444. |
4 | ZHANG H M, MCLOUGHLIN I, SONG Y. Robust sound event recognition using convolutional neural networks[C]//the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York, USA: IEEE, 2016: 559-563. |
5 | PHAN H, HERTEL L, MAASS M, et al. Robust audio event recognition with 1-max pooling convolutional neural networks[C]//Proceedings of the 17th Annual Conference of the International Speech Communication Association (INTERSPEECH).San Francisco, USA: Interspeech, 2016: 3653-3657. |
6 | PICZAK K J. Environmental sound classification with convolutional neural networks[C]//the 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP). Boston, USA: IEEE, 2015: 1-6. |
7 | JEON S, SHIN JW, LEE YJ, et al. Empirical study of drone sound detection in real-life environment with deep neural networks[J]. arXiv: Sound, 2017.https://arxiv.org/abs/1701.05779. |
8 | SALAMON J, BELLO J. P. Feature learning with deep scattering for urban sound analysis[C]// 25th 2015 23rd European Signal Processing Conference(EUSIP-CO).Nice, France: IEEE, 2015: 724-728. |
9 | JIA F , LEI Y G , GUO L , et al. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J]. Neurocom-puting, 2017, 272, 619- 628. |
10 | STOWELL D, CLAYTON D. Acoustic event detection for multiple overlapping similar sources[C]//2015 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).New York, USA: IEEE, 2015: 1-5. |
11 |
SADLIER D A , O'CONNOR N E . Event detection in field sports video using audio-visual features and a support vector machine[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15 (10): 1225- 1233.
doi: 10.1109/TCSVT.2005.854237 |
12 | LI B, HE M Y, CHENG X L, et al. Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep CNN[C]//Proceedings of 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). New York, USA: IEEE, 2017: 601-604. |
13 | XU Y F , ZHANG Y , WANG H G , et al. Deep convolutional neural networks and data augmentation for environmental sound classification[J]. IEEE Signal Processing Letters, 2017, 24 (3): 279- 283. |
14 | NARASIMHAN R, FERN X L, RAICH R. Simultaneous segmentation and classification of bird song using CNN[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).New Orleans, USA: IEEE, 2017: 146-150. |
15 | ANTONIOU A, STORKEY A, EDWARDS H. Data augmentation generative adversarial networks[J]. arXiv: Computer Vision and Pattern Recognition, 2018. https://arxiv.org/abs/1711.04340v3. |
16 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M. Generative Adversarial Networks[J]. arXiv: Machine Learning, 2014.https://arxiv.org/abs/1406.2661. |
17 | DENTON E, CHINTALA S, FERGUS R. Deep generative image models using a laplacian pyramid of adversarial networks[C]// 28th International Conference on Neural Information Processing. California, USA: NIPS, 2015: 1486-1494. |
18 | POUYANFAR S, TAO Y, MOHAN A. Dynamic sampling in convolutional neural networks for imbalanced data classification[C]// 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). New York, USA: IEEE, 2018: 112-117. |
19 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv: Computer Vision and Pattern Recognition, 2015. https://arxiv.org/abs/1511.06434. |
20 | STOWELL D, WOOD M, STYLIANOU Y, et al. Bird detection in audio: A survey and a challenge[C]// 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP). New York, USA: IEEE, 2016: 1-6. |
21 |
ABDEL-HAMID O , MOHAMED A , JIANG H , et al. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22 (10): 1533- 1545.
doi: 10.1109/TASLP.2014.2339736 |
22 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]// Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS).Ft.Lauderdale, USA: Neural Networks, 2011: 315-323. |
23 | IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of 32nd International Conference on International Conference on Machine Learning. New York, USA: ACM, 2015: 448-456. |
24 | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[J]. arXiv: Neural and Evolutionary Computing, 2016. https://arxiv.org/abs/1606.03498v1. |
25 | SALAMON J , BELLO J . Deep convolutional neural net-works and data augmentation for environmental sound classification[J]. IEEE Signal Processing Letters, 2017, 24 (3): 279- 283. |
26 | CUI X D, GOEL V, KINGSBURY B. Data augmentation for deep neural network acoustic modeling[C]// 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York, USA: IEEE, 2014: 1469-1477. |
27 | KONG Q Q, XU Y, MARK D. Joint detection and classification convolutional neural network on weakly labelled bird audio detection[C]// Proceedings of 2017 25th European Signal Processing Conference (EUSIPCO). Kos: Greece, IEEE, 2017: 1749-1753. |
28 | TANG B , TU Y , ZHANG S Y . Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access, 2018, (6): 15713- 15722. |
29 | MESAROS A, HEITTOLA T, VIRTANEN T. TUT database for acoustic scene classification and sound event detection[C]//Proceedings of 2016 24th European Signal Processing Conference (EUSIPCO).Hungary, Budapest: IEEE, 2016: 1128-1132. |
30 | ZHENG Q H , YANG M Q , YANG J J . Improvement of generalization ability of deep CNN via implicit regularization in two-stage training process[J]. IEEE Access, 2018, (6): 15844- 15869. |
31 |
MCLOUGHLIN I , ZHANG H M , XIE Z P . Robust sound event classification using deep neural networks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23 (3): 540- 552.
doi: 10.1109/TASLP.2015.2389618 |
[1] | Delei CHEN,Cheng WANG,Jianwei CHEN,Yiyin WU. GRU-based collaborative filtering recommendation algorithm with active learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 21-27,48. |
[2] | Guoyong CAI,Qiang LIN,Kaiqi REN. Cross-domain text sentiment classification based on domain-adversarialnetwork and BERT [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 1-7,20. |
[3] | Zhifu CHANG,Fengyu ZHOU,Yugang WANG,Dongdong SHEN,Yang ZHAO. A survey of image captioning methods based on deep learning [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 25-35. |
[4] | Peng WAN. Object detection of 3D point clouds based on F-PointNet [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 98-104. |
[5] | Ji ZHANG,Cui JIN,Hongyuan WANG,Shoubing CHEN. Pedestrian recognition based on singular value decomposition pedestrian alignment network [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 91-97. |
[6] | Zhixiang LIANG,Xiaoming LIU,Ying MU,Yutian LIU. Prediction method of wind power and PV ramp event based on deep learning [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 24-28. |
[7] | Yutian LIU, Runjia SUN, Hongtao WANG, Xueping GU. Review on application of artificial intelligence in power system restoration [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 1-8. |
[8] | Lizhao LI,Guoyong CAI,Jiao PAN. A microblog rumor events detection method based on C-GRU [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 102-106, 115. |
[9] | Xiaoxiong HOU,Xinzheng XU,Jiong ZHU,Yanyan GUO. Computer aided diagnosis method for breast cancer based on AlexNet and ensemble classifiers [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 74-79. |
[10] | Chengbin ZHANG,Hui ZHAO,Zongyu CAO. The vulnerability mining method for KWP2000 protocol based on deep learning and fuzzing [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 17-22. |
[11] | Wenwen QUAN,Mingxing LIN. Algorithm of underwater target recognition based on CNN features with BOF [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 107-113. |
[12] | XIE Zhifeng, WU Jiaping, MA Lizhuang. Chinese financial news classification method based on convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 34-39. |
[13] | TANG Leshuang, TIAN Guohui, HUANG Bin. An object fusion recognition algorithm based on DSmT [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 50-56. |
[14] | ZHOU Funa, GAO Yulin, WANG Jiayu, WEN Chenglin. Early diagnosis and life prognosis for slowlyvarying fault based on deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 30-37. |
[15] | HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47. |
|