Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (2): 91-99.doi: 10.6040/j.issn.1672-3961.0.2019.404
• Machine Learning & Data Mining • Previous Articles Next Articles
Minghe GAO1(),Ying ZHANG1,*(),Rongrong ZHANG1,Zihao HUANG1,Linyan HUANG1,Fanyu LI1,Xin ZHANG2,Yanhao WANG1
CLC Number:
1 | HUANG J , DUAN N , JI P , et al. A crowd source-based sensing system for monitoring fine-grained air quality in urban environments[J]. IEEE Internet of Things Journal, 2018, 6 (2): 3240- 3247. |
2 |
LI X , PENG L , HU Y , et al. Deep learning architecture for air quality predictions[J]. Environmental Science and Pollution Research, 2016, 23 (22): 22408- 22417.
doi: 10.1007/s11356-016-7812-9 |
3 |
ZHOU Q , JIANG H , WANG J , et al. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network[J]. Science of the Total Environment, 2014, 496, 264- 274.
doi: 10.1016/j.scitotenv.2014.07.051 |
4 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735 |
5 |
COSMA A C , SIMHA R . Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions[J]. Building and Environment, 2019, 148, 372- 383.
doi: 10.1016/j.buildenv.2018.11.017 |
6 | ZHU D , CAI C , YANG T , et al. A machine learning approach for air quality prediction: model regularization and optimization[J]. Big Data and Cognitive Computing, 2018, 2 (1): 1- 15. |
7 |
WANG D , WEI S , LUO H , et al. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine[J]. Science of the Total Environment, 2017, 580, 719- 733.
doi: 10.1016/j.scitotenv.2016.12.018 |
8 |
MAHAJAN S , LIU H M , TSAI T C , et al. Improving the accuracy and efficiency of PM2.5 forecast service using cluster-based hybrid neural network model[J]. IEEE Access, 2018, 6, 19193- 19204.
doi: 10.1109/ACCESS.2018.2820164 |
9 | ZHENG Y, YI X, LI M, et al. Forecasting fine-grained air quality based on big data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, Australia: Associ-ation for Computing Machinery, 2015: 2267-2276. |
10 | ZHANG C, YUAN D. Fast fine-grained air quality index level prediction using random forest algorithm on cluster computing of spark[C]//Proceeding of 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom). Beijing, China: IEEE, 2015: 929-934. |
11 |
GAO M , YIN L , NING J . Artificial neural network model for ozone concentration estimation and Monte Carlo analysis[J]. Atmospheric Environment, 2018, 184, 129- 139.
doi: 10.1016/j.atmosenv.2018.03.027 |
12 | ZHENG Y, LIU F, HSIEH HP. U-air: when urban air quality inference meets big data[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA: Association for Computing Machinery, 2013: 1436-1444. |
13 | HSIEH H P, LIN S D, ZHENG Y. Inferring air quality for station location recommendation based on urban big data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, Australia: Association for Computing Machinery, 2015: 437-446. |
14 |
WANG J , SONG G . A deep spatial-temporal ensemble model for air quality prediction[J]. Neurocomputing, 2018, 314, 198- 206.
doi: 10.1016/j.neucom.2018.06.049 |
15 | HUANG C J , KUO P H . A deep cnn-lstm model for particulate matter (PM2.5) forecasting in smart cities[J]. Sensors, 2018, 18 (7): 1- 22. |
16 | SUN W, DUAN N, JI P, et al. Intelligent in-vehicle air quality management: a smart mobility application dealing with air pollution in the traffic[C]//Proceeding of 23rd ITS World Congress. Melbourne, Australia: Intelligent Transport Systems Australia, 2016: 1-12. |
17 | MA C, DUAN N, SUN W, et al. Reducing air pollution exposure in a road trip[C]//Proceeding of 24rd ITS World Congress. Montreal, Canada: Intelligent Transport Systems Australia, 2017: 1-12. |
18 |
CHENG Y , ZHANG S , HUAN C , et al. Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving[J]. Building and Environment, 2019, 147, 11- 22.
doi: 10.1016/j.buildenv.2018.10.009 |
19 | SUN W, ZHU J, DUAN N, et al. Moving object map analytics: a framework enabling contextual spatial-temporal analytics of Internet of Things applications[C]//Proceeding of 2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). Beijing, China: IEEE, 2016: 101-106. |
20 | ROY S S, PRATYUSH C, BARNA C. Predicting ozone layer concentration using multivariate adaptive regression splines, random forest and classification and regression tree[C]//Proceeding of International Workshop Soft Computing Applications. Arad, Romania: Springer, 2016: 140-152. |
21 | CHANG J C , HANNA S R . Air quality model performance evaluation[J]. Meteorology and Atmospheric Physics, 2004, 87 (1/2/3): 167- 196. |
22 | MEIJERING E . A chronology of interpolation: from ancient astronomy to modern signal and image processing[J]. Proceedings of the IEEE, 2002, 90 (3): 319- 342. |
23 | KE G, MENG Q, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree[C]//Proceeding of 31st Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates, Inc., 2017: 3146-3154. |
24 | FRIEDMAN JH . Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29 (5): 1189- 1232. |
[1] | Dapeng ZHANG,Yajun LIU,Wei ZHANG,Fen SHEN,Jiansheng YANG. Fake comment detection based on heterogeneous ensemble learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 1-9. |
[2] | Yutian LIU, Runjia SUN, Hongtao WANG, Xueping GU. Review on application of artificial intelligence in power system restoration [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 1-8. |
[3] | Tong LI,Ran MA,Honghe ZHENG,Ping AN,Xiangyu HU. An error sensitivity model based on video statistical features [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 116-121. |
[4] | Qijie ZOU,Haoyu LI,Rubo ZHANG,Tengda PEI,Yan LIU. Survey of human-robot interaction control for autonomous driving [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 23-33. |
[5] | Mian ZHANG,Ying HUANG,Haiyi MEI,Yu GUO. Intelligent interaction method for power distribution robot based on Kinect [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 103-108. |
[6] | LIU Yang, LIU Bo, WANG Feng. Optimization algorithm for big data mining based on parameter server framework [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 1-6. |
[7] | WEI Bo, ZHANG Wensheng, LI Yuanxiang, XIA Xuewen, LYU Jingqin. A sparse online learning algorithm for feature selection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 22-27. |
[8] | ZHOU Wang, ZHANG Chenlin, WU Jianxin. Qualitative balanced clustering algorithm based on Hartigan-Wong and Lloyd [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 37-44. |
[9] | MENG Lingheng, DING Shifei. Depth perceptual model based on the single image [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 37-43. |
[10] | LIU Jie, YANG Peng, LYU Wensheng, LIU Agudamu, LIU Junxiu. Prediction models of PM2.5 mass concentration based on meteorological factors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 76-83. |
[11] | ZHENG Yi, ZHU Chengzhang. A prediction method of atmospheric PM2.5 based on DBNs [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 19-25. |
[12] | XIE Lin1, YIN Xi-yao2, LI Fan-zhang3, WU Jia3. A kind of inverse resolution learning expression [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 46-50. |
[13] | HE Xue-ying1, 2, QIN Wei1, YIN Yi-long1 *, ZHAO Lian-zheng1,QIAO Hao3. Video-based fingerprint verification using machine learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 29-33. |
[14] | LIANG Chun-lin1, PENG Ling-xi2*. An immune network based unsupervised classifier [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 82-86. |
[15] | GUO Mao-Zu, ZOU Quan, LI Wen-Bin, HAN Ying-Peng. Learning in bioinformatics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 1-6. |
|