Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (3): 108-113.doi: 10.6040/j.issn.1672-3961.0.2017.449

• Mechanical Engineering • Previous Articles     Next Articles

Prediction method of tailing dam groundwater levels based on improved PSO-BP neural network

Diankun ZHENG1(),Tongle XU1,*(),Zhaojie YIN1,Qingmin MENG2   

  1. 1. Mechanical Engineering School, Shandong University of Technology, Zibo 255049, Shandong, China
    2. Shanbo Anjifu Gear Motor Co., Ltd., Zibo 255200, Shandong, China
  • Received:2017-09-04 Online:2019-06-20 Published:2019-06-27
  • Contact: Tongle XU E-mail:zdk5287@163.com;xutongle@163.com
  • Supported by:
    山东省自然科学基金资助项目(ZR2013FM005);淄博市科学技术发展计划资助项目(JY20151587)

Abstract:

To solve the low convergence speed and poor precision problem of the traditional prediction algorithm, an improved particle swarm optimization(IPSO) algorithm was proposed. The inertia factor ω and the accelerating factor c1 and c2 of the algorithm were dynamically adjusted during the searching process to improve the optimization effectiveness. The weights and thresholds of back propagation(BP) network were optimized by the improved algorithm. And the prediction model of groundwater levels in tailing dam was built and verified according to its instance data. The test results showed that the convergence speed of algorithm and the accuracy of prediction model was improved.

Key words: dynamic optimization, groundwater levels, particle swarm, BP neural network, prediction model

CLC Number: 

  • TD76

Fig.1

The fitness curves of two algorithms"

Fig.2

Flowchart of the improved PSO-BP network prediction model"

Table 1

The instance data of tailing dam"

序号 最小干滩长度/m 库水位/m 渗流量/(m3/h) 水平位移/m 垂直位移/m 孔隙压力比 地下水位/m
1 287.36 12.35 7.50 0.012 0.005 0.40 8.54
2 289.17 12.30 7.52 0.012 0.005 0.35 8.53
3 292.14 12.18 7.48 0.012 0.005 0.25 8.43
118 285.43 12.48 7.60 0.016 0.008 0.55 8.70
119 285.04 12.56 7.68 0.016 0.008 0.58 8.77
120 287.43 12.42 7.55 0.016 0.008 0.40 8.58

Table 2

The correlation analysis result of each measuring point data and the groundwater level"

参数 最小干滩长度 库水位 渗流量 水平位移 垂直位移 孔隙压力比
相关系数r -0.832 0.901 0.811 0.103 0.072 0.863

Table 3

The test results of various neural network models with different numbers of hidden nodes"

节点数 3 4 5 6 7 8 9 10 11 12 13 14
PSO-BP 0.803 5 0.301 7 0.120 6 0.078 1 0.035 4 0.086 5 0.271 6 0.372 1 0.591 3 0.644 5 0.711 5 0.761 1
IPSO-BP 0.131 2 0.045 6 0.017 1 0.006 8 0.009 8 0.011 9 0.023 6 0.054 1 0.073 3 0.081 8 0.096 7 0.103 2

Fig.3

The prediction results of different network structure models"

Table 4

Output and error analysis results of the prediction model"

样本序号 实测值 网络结构:4-6-1 网络结构:4-7-1
PSO预测值/m PSO误差值/% IPSO预测值/m IPSO误差值/% PSO预测值/m PSO误差值/% IPSO预测值/m IPSO误差值/%
1 9.15 9.27 1.30 9.09 -0.66 9.29 1.50 9.21 0.66
2 9.10 9.19 0.99 9.05 -0.55 8.98 -1.30 9.03 -0.77
3 8.89 8.79 -1.10 8.91 0.22 8.99 1.10 8.98 1.00
4 8.80 8.86 0.68 8.76 -0.45 8.94 1.60 8.76 -0.45
5 8.85 8.92 0.79 8.85 0.00 8.96 1.20 8.81 -0.45
6 8.78 8.89 0.11 8.76 -0.23 8.69 -1.00 8.85 0.80
7 8.75 8.85 1.10 8.71 -0.46 8.82 0.80 8.71 -0.46
8 8.70 8.69 -0.11 8.72 0.23 8.78 0.92 8.75 0.57
9 8.77 8.89 1.40 8.76 -0.11 8.90 1.50 8.85 0.91
10 8.58 8.72 1.60 8.61 0.35 8.76 2.10 8.66 0.93
平均相对误差/% 0.92 0.33 1.30 0.70
1 冯治刚, 王桂生, 吴晓荣, 等. 基于时间序列法的高拱坝强度安全裕度分析评价模型及应用[J]. 水电能源科学, 2013, 31 (11): 61- 64.
FENG Zhigang , WANG Guisheng , WU Xiaorong , et al. Strength safety margin analysis and evaluation model of high arch dam foundation based on time series method[J]. Water Resources and Power, 2013, 31 (11): 61- 64.
2 邱坤南, 沈斐敏. 小波多尺度分析的浸润线预测方法[J]. 福州大学学报(自然科学版), 2016, 44 (5): 746- 752.
QIU Kunnan , SHEN Feimin . Research on infiltration route prediction method based on wavelet multi-resolution-analysis[J]. Journal of Fuzhou University(Natural Science Edition), 2016, 44 (5): 746- 752.
3 郎学政, 许同乐, 黄湘俊, 等. 利用PCA和神经网络预测尾矿坝地下水位[J]. 水文地质工程地质, 2014, 41 (2): 13- 17.
LANG Xuezheng , XU Tongle , HUANG Xiangjun , et al. Research on prediction of groundwater levels near a tailing dam based on PCA and artificial neural network[J]. Hydrogeology and Engineering Geology, 2014, 41 (2): 13- 17.
4 何勇, 李妍琰. 改进粒子群优化BP神经网络的洪水智能预测模型研究[J]. 西南师范大学学报(自然科学版), 2014, 39 (5): 75- 80.
HE Yong , LI Yanyan . On application of improved PSO-BP neural network in intelligent flood forecasting model[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39 (5): 75- 80.
5 程加堂, 艾莉, 熊燕. 基于IQPSO-BP算法的煤矿瓦斯涌出量预测[J]. 矿业安全与环保, 2016, 43 (4): 38- 41.
doi: 10.3969/j.issn.1008-4495.2016.04.010
CHENG Jiatang , AI Li , XIONG Yan . Coal mine gas emission prediction based on IQPSO-BP algorithm[J]. Mining Safety & Environmental Protection, 2016, 43 (4): 38- 41.
doi: 10.3969/j.issn.1008-4495.2016.04.010
6 高峰, 冯民权, 滕素芬. 基于PSO优化BP神经网络的水质预测研究[J]. 安全与环境学报, 2015, 15 (4): 338- 341.
GAO Feng , FENG Minquan , TENG Sufen . On the way for forecasting the water quality by BP neural network based on the PSO[J]. Journal of Safety and Environment, 2015, 15 (4): 338- 341.
7 潘少伟, 梁鸿军, 李良, 等. 改进PSO-BP神经网络对储层参数的动态预测研究[J]. 计算机工程与应用, 2014, 50 (10): 52- 56.
doi: 10.3778/j.issn.1002-8331.1308-0413
PAN Shaowei , LIANG Hongjun , LI Liang , et al. Dynamic prediction on reservoir parameter by improved PSO-BP neural network[J]. Computer Engineering and Applications, 2014, 50 (10): 52- 56.
doi: 10.3778/j.issn.1002-8331.1308-0413
8 邹卫霞, 王多万, 杜光龙. 基于粒子群优化的频域多信道干扰对齐算法[J]. 北京邮电大学学报, 2016, 39 (3): 22- 26.
ZOU Weixia , WANG Duowan , DU Guanglong . On particle swarm optimization for multi-frequency channel interference alignment[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39 (3): 22- 26.
9 花景新, 薄煜明, 陈志敏. 基于改进粒子群优化神经网络的房地产市场预测[J]. 山东大学学报(工学版), 2014, 44 (4): 24- 32.
HUA Jingxin , BO Yuming , CHEN Zhimin . Forecasting of real estate market based on particle swarm optimized neural network[J]. Journal of Shandong University (Engineering Science), 2014, 44 (4): 24- 32.
10 GAO Z , LI X Z . The hybrid adaptive particle swarm optimization based on the average speed[J]. Control and Decision-Making, 2012, 27 (1): 152- 160.
11 ZHOU C , TAO J C . Adaptive combination forecasting model for China's logistics freight volume based on an improved PSO-BP neural network[J]. Kybernetes, 2015, 44 (4): 646- 666.
doi: 10.1108/K-09-2014-0201
12 SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99.[S.l.]: IEEE, 1999: 1945-1950.
[1] Hongming LIU,Hongyan ZENG,Wei ZHOU,Tao WANG. Optimization of job shop scheduling based on improved particle swarm optimization algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 75-82.
[2] Meng LIU,Taoyang XU,Changgang LI,Yue WU,Zhi WANG,Fangfang SHI,Jianjun SU,Guohui ZHANG,Kuan LI. Optimization of emergency load shedding of receiving-end power grid based on Particle Swarm Optimization [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 120-128.
[3] JI Anzhao, WANG Yufeng, LIU Xuefen. Numerical calculation method and distribution law of zero points of the compound Bessel function [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 71-77.
[4] XIE Guohui, FAN Hao. Prediction model of concentrating solar power technology maturity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 83-88.
[5] YI Yunfei, MIAO Jian, LIN Guolong, YIN Zhi. Particle network optimization algorithm based on Newtonian mechanics and game theory model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 28-36.
[6] FAN Debin, DENG Changshou, YUAN Sihao, TAN Xujie, DONG Xiaogang. Distributed particle swarm optimization algorithm based on mapreduce [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 23-30.
[7] HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47.
[8] LIU Jie, YANG Peng, LYU Wensheng, LIU Agudamu, LIU Junxiu. Prediction models of PM2.5 mass concentration based on meteorological factors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 76-83.
[9] DONG Hongbin, ZHANG Guangjiang, PANG Jinwei, HAN Qilong. A clustering ensemble algorithm based on co-evolution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 1-9.
[10] WANG Huifang, ZHAO Zhicheng, ZHANG Jinggang. Design of a fractional order IMC-IDμ controller for high order systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 77-82.
[11] HUA Jingxin, BO Yuming, CHEN Zhimin. Forecasting of real estate market based on particle swarm optimized neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 22-30.
[12] JING Ye-fei1, ZHANG Cheng-hui1*, XU Bei-bei, LI Ke1, CHU Xiao-guang1. An output power optimization method based on impedance matching for a small wind generation system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 39-43.
[13] ZHANG Fei, GENG Hong-qin. Optimization of job-shop scheduling problem based on chaos particle swarm optimization algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(3): 19-22.
[14] XU Long-qin1, LIU Shuang-yin1,2,3,4*. Water quality prediction model based on APSO-WLSSVR [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 80-86.
[15] LIU Bin, ZHANG Ren-jin. A path planning method using two-stage particle swarm optimization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(1): 12-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[3] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[4] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[5] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[6] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[7] WANG Li-ju,HUANG Qi-cheng,WANG Zhao-xu . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 51 -56 .
[8] SUN Guohua, WU Yaohua, LI Wei. The effect of excise tax control strategy on the supply chain system performance[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 63 -68 .
[9] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[10] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 92 -95 .