Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (5): 16-23.doi: 10.6040/j.issn.1672-3961.0.2017.409

• Machine Learning & Data Mining • Previous Articles     Next Articles

Fast scene recognition based on LDB descriptor and local spatial structure matching

Dongbo ZHANG1,2(),Tao KOU1,2,Haixia XU1,2   

  1. 1. College of Information Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
    2. Robot Visual Perception & Control Technology National Engineering Laboratory, Changsha 410012, Hunan, China
  • Received:2017-08-24 Online:2018-10-01 Published:2017-08-24
  • Supported by:
    国家自然科学基金资助项目(61602397);湖南省自然科学基金资助项目(2017JJ2251);湖南省重点学科建设资助项目

Abstract:

A new local difference binary (LDB) descriptor and local spatial structure matching method was proposed to implement fast scene recognition. The multi-grid dense sampling method was used to obtain grayscale and gradient information of the image area, and the binary description was performed by comparing the grayscale and gradient size between the grids, which inherited the advantages of fast and low storage of binary feature extraction. The multi-point matching was adopted to replace the original single point of matching technology, which removed a large number of mismatches, thus the match accuracy was improved. The experiment showed that the efficiency of this method was about 2.7 times of SIFT and 1.9 times of SURF. The validity and recognition performance of the method were fully verified.

Key words: local feature, binary feature description, local spatial structure matching, scene identification, robust

CLC Number: 

  • TP391

Fig.1

Image Pyramid"

Fig.2

Schematic diagram of image patch centroids"

Fig.3

LDB feature calculation"

Fig.4

The matching image of the Civil Building and the Library Building by LDB descriptors"

Fig.5

The matching image of the Engineering Building by LDB descriptors"

Fig.6

Spatial structure extraction diagram"

Fig.7

Flow chart of structure matching judgment"

Fig.8

Sample images of the data set"

Fig.9

The matching results of several methods in different conditions"

Fig.10

The matching image of the Civil Building and the Library Building by our method"

Table 1

The matching results comparison of different scenarios with several algorithms"

方法 图片 关键点数 错误匹配点数
SIFT 土木楼 1 797 74
图书馆 2 151
SURF 土木楼 2 786 54
图书馆 2 340
ORB 土木楼 2 000 19
图书馆 2 000
LDB 土木楼 1 955 20
图书馆 1 925
本研究方法 土木楼 1 955 1
图书馆 1 925

Fig.11

The matching result of two images of the Engineering Buildings by our method"

Table 2

The statistical results comparison of matching the Engineering Buildings with several methods"

方法 图片 关键点数目 匹配点对 正确匹配数 准确率/%
SIFT 工科楼1 1 243 66 48 72.73
工科楼2 1 466
SURF 工科楼1 2 080 113 34 69.91
工科楼2 1 891
LDB 工科楼1 2 706 87 78 89.66
工科楼2 2 780
ORB 工科楼1 2 820 81 58 71.60
工科楼2 2 926
本研究 工科楼1 2 706 52 52 100
工科楼2 2 780

Table 3

Speed test results comparison of several methods"

方法 关键点总数 单张图片时间/s 单点时间/ms
Sift 2 790 2.94 1.08
Surf 3 971 3.05 0.77
ORB 3 949 0.79 0.20
本研究 3 664 1.48 0.40

Table 4

Recognition rate comparison of several methods"

方法 识别图片数量 正确识别数量 准确率/%
LDB 508 369 72.64
ORB 703 368 57.04
SIFT 241 216 86.53
SURF 197 171 86.80
本研究 304 299 98.36

Fig.12

The Recall-Precision contrast curves of the proposed method with GMS"

1 LOWE D G . Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
2 BAY H, TUYTELAARS T, GOOL L V. SURF: speeded up robust features[C]//European Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2006: 404-417.
3 RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012: 2564-2571.
4 OJALA T , PIETIKÄINEN M , MÄENPÄÄ T . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24 (7): 971- 987.
5 TAKACS G , CHANDRASEKHAR V , TSAI S S , et al. Fast computation of rotation-invariant image features by an approximate radial gradient transform[J]. IEEE Transactions on Image Processing A:Publication of the IEEE Signal Processing Society, 2013, 22 (8): 2970- 2982.
doi: 10.1109/TIP.2012.2230011
6 WANG Z, FAN B, WU F. Local intensity order pattern for feature description[C]//International Conference on Computer Vision. Barcelona, Spain: IEEE Computer Society, 2011: 603-610.
7 MOREL J M , YU G . ASIFT: a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2 (2): 438- 469.
doi: 10.1137/080732730
8 HUA G, BROWN M, WINDER S. Discriminant embedding for local image descriptors[C]//IEEE, International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007: 1-8.
9 汤伯超, 蔡念, 程昱. 基于颜色量化矩阵的SIFT特征描述方法[J]. 山东大学学报(工学版), 2011, 41 (2): 46- 50.
TANG Bochao , CAI Nian , CHENG Yu . A novel SIFT descriptor based on a color quantization matrix[J]. Journal of Shandong University(Engineering Science), 2011, 41 (2): 46- 50.
10 CALONDER M , LEPETIT V , OZUYSAL M , et al. BRIEF: computing a local binary descriptor very fast[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34 (7): 1281- 1298.
11 LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: binary robust invariant scalable keypoints[C]//IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012: 2548-2555.
12 FISCHLER M A , BOLLES R C . Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[M]. New York, USA: ACM, 1981.
13 TORR P H S , ZISSERMAN A . MLESAC: a new robust estimator with application to estimating image geometry[J]. Computer Vision & Image Understanding, 2000, 78 (1): 138- 156.
14 CHIN T J , YU J , SUTER D . Accelerated hypothesis generation for multistructure data via preference analysis[M]. Washington D. C., USA: IEEE Computer Society, 2012.
15 RAGURAM R, FRAHM J M, POLLEFEYS M. A Comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus[M]//Computer Vision: ECCV 2008. Berlin Heidelberg, Germany: Springer, 2008: 500-513.
16 CHUM O, MATAS J, KITTLER J. Locally optimized RANSAC[C]//Joint Pattern Recognition Symposium. Berlin Heidelberg, Germany: Springer-Verlag, 2003: 236-243.
17 SATTLER T, LEIBE B, KOBBELT L. SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter[C]//IEEE, International Conference on Computer Vision. Kyoto, Japan: IEEE, 2010: 2090-2097.
18 PIZARRO D , BARTOLI A . Feature-Based deformable surface detection with self-occlusion reasoning[J]. International Journal of Computer Vision, 2012, 97 (1): 54- 70.
doi: 10.1007/s11263-011-0452-0
19 LIN W Y D, CHENG M M, LU J, et al. Bilateral functions for global motion modeling[C]//European Conference on Computer Vision. Cham, Switzerland: Springer, 2014: 341-356.
20 LIN W Y, LIU S, JIANG N, et al. RepMatch: robust feature matching and pose for reconstructing modern cities[C]//European Conference on Computer Vision. Cham, Switzerland: Springer, 2016: 562-579.
21 LIPMAN Y , YAGEV S , PORANNE R , et al. Feature matching with bounded distortion[J]. Acm Transactions on Graphics, 2014, 33 (3): 26.
22 MAIER J, HUMENBERGER M, MURSCHITZ M, et al. Guided matching based on statistical optical flow for fast and robust correspondence analysis[C]//European Conference on Computer Vision. Berlin Heidelberg, Germany: Springer International Publishing, 2016: 101-117.
23 LIN W Y , WANG F , CHENG M M , et al. CODE: coherence based decision boundaries for feature correspondence[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, (99): 34- 47.
24 BIAN J W, LIN W Y, YASUYUKI M. GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[C]//Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2017: 4181-4190.
25 YANG X , CHENG K T . Local difference binary for ultrafast and distinctive feature description[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 36 (1): 188.
[1] CHU Xiaodong, TANG Maosen, GAO Xu, LIU Weisheng, JIA Shanjie, LI Sun. Robust optimal dispatch of active distribution networks based on centralized information system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 20-25.
[2] HOU Mingdong, WANG Yinsong, TIAN Jie. An IMC-PID robust control method for process of integrator plus time delay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 64-67.
[3] ZHOU Kai, YUAN Changan, QIN Xiao, ZHENG Yan, FENG Wenduo. Face recognition based on kernel Bayesian compressive sensing [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 74-78.
[4] LI Xiaohua, YAN Wei, LIU Yang. Decentralized finite-time robust connective stabilization for large-scale descriptor systems with expanding construction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 16-28.
[5] WEI Wei, DAI Ming, LI Jiaquan, MAO Dapeng, LI Xiantao. Design of the disturbance observer of opto-electronic platform in frequency domain [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(4): 45-49.
[6] ZHANG Huihui, XIA Jianwei. Robust stochastic stability for uncertain stochastic system with multiple delays [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 54-63.
[7] GE Kairong, CHANG Faliang, DONG Wenhui. Sparse representation tracking method based on locality sensitive histogram [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 14-19.
[8] XIE Jing, KAO Yonggui, GAO Cunchen, ZHANG Mengqiao. Integral sliding mode control for uncertain stochastic singular Markovian jump systems with time-varying delays [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 31-38.
[9] XIE Zhi-hua. A novel blood perfusion construction model and its application in infrared face recognition [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 1-5.
[10] ZHAO Zhan-shan1,2, ZHANG Jing3, SUN Lian-kun, DING Gang1. Design of self-adaptive sliding mode controller with finite time convergence [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 74-78.
[11] ZHOU Changhui1, HU Yongjian2, YU Shaopeng1. Design of a robust source scanner identification algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(2): 62-65.
[12] HUANG Bin. Discrete variable control systems based on a discrete reaching law [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 45-48.
[13] LI Yue-Yang, WANG Shi-Tong. An impulse noise filtering algorithm based on a robust neuro-fuzzy network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 164-170.
[14] WANG Yuzhen1, LIU Yuchang2, FENG Gang3. Simultaneous stabilization of nonlinear portcontrolled Hamiltonian systems via output feedback [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 52-63.
[15] ZHAO Yong-guo,JIA Lei,CAI Wen-jian . A PID tuning method for integrating processes [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 48-51 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MENG Jian, LI Yibin, LI Bin. Bound gait controlling method of quadruped robot[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 28 -34 .
[2] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[3] WANG Huiqing, SUN Hongwei, ZHANG Jianhui. Time series similarity searching algorithm based on Map/Reduce[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 15 -21 .
[4] HOU Yan, YANG Meng. Highly efficient algorithm for tracking explicit surface to process complex topological events[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 15 -20 .
[5] HUANG Jinchao. A new method for muti-objects image segmentation based on faster region proposal networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 20 -26 .
[6] ZHOU Shaowei. The finite-time stability of stochastic Markov jumping systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 78 -84 .
[7] TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45 -53 .
[8] DAI Ping, LI Ning*. A fast SVM-based feature selection method[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 60 -65 .
[9] ZHANG Jianming, LIU Quansheng, TANG Zhicheng, ZHAN Ting, JIANG Yalong. New peak shear strength criterion with inclusion of shear action history[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 77 -81 .
[10] WANG Huan, ZHOU Zhongmei. An over sampling algorithm based on clustering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 134 -139 .