JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2014, Vol. 44 ›› Issue (4): 31-38.doi: 10.6040/j.issn.1672-3961.0.2013.309
Previous Articles Next Articles
XIE Jing1, KAO Yonggui2, GAO Cunchen3, ZHANG Mengqiao2
CLC Number:
[1] XU S Y, LAM J. Robust control and filtering of singular systems[M]. 1st ed. New York: Springer-Verlag, 2006. [2] BOUKAS E K. Stochastic switching systems: analysis and design[M]. 1st ed. Berlin: Birkhauser, 2005. [3] KAO Y G, WANG C H, ZHANG L X. Delay-dependent exponential stability of impulsive Markovian jumping Cohen-Grossberg neural networks with reaction-diffusion and mixed delay[J]. Neural Processing Letters, 2013, 38(3):321-346. [4] KAO Y G, WANG C H, ZHA F S, et al. Stability in mean of partial variables for stochastic reaction-diffusion systems with Markovian switching[J]. Journal of Franklin Institute, 2014, 351:500-512. [5] MAO X R, YUAN C G. Stochastic differential equations with Markovian switching[M]. 1st ed. London: Imperial College Press, 2006. [6] DING Y C, ZHU H, ZHONG S M, et al. Exponential mean-square stability of time-delay singular systems with Markovian switching and nonlinear perturbations[J]. Applied Mathematics and Computation, 2012, 219(4):2350-2359. [7] MA S P, BOUKAS E K. Guaranteed cost control of uncertain discrete-time singular Markov jump systems with indefinite quadratic cost[J]. International Journal of Robust and Nonlinear Control, 2011, 21(9):1031-1045. [8] WANG G, ZHANG Q. Robust control of uncertain singular stochastic systems with Markovian switching via proportional-derivative state feedback[J]. IET Control Theory and Applications, 2011, 6(8):1089-1096. [9] NIU Y G, JIA T G, HUANG H Q. Design of sliding mode control for neutral type systems with time-delay with perturbation in control channels[J]. Optimal Control Applications and Methods, 2012, 33:363-374. [10] WU L G, WANG C H, GAO H J, et al. Sliding mode H∞ control for a class of uncertain nonlinear state-delayed systems[J]. Journal of Systems Engineering and Electronics, 2006, 17(3):576-585. [11] CHEN B, NIU Y G, ZOU Y Y. Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation[J]. Automatica, 2013, 49(6):1748-1754. [12] RICHARD P Y, CORMERAIS H, BUISSON J. A generic design methodology for sliding control of switched systems[J]. Nonlinear Analysis, 2006, 65(9):1751-1772. [13] LIAN J, ZHAO J. Robust control of uncertain switched systems: a sliding mode control design[J]. Auto Automatica Sincia, 2009, 35(7):965-970. [14] WU L G, SU X J, SHI P. Sliding mode control with bounded H2 gain performance of Markovian jump singular time-delay systems[J]. Automatica, 2010, 48(8):1929-1933. [15] WU L G, ZHENG W X. Passivity-based sliding mode control of uncertain singular time-delay systems[J]. Automatica, 2009, 45(9):2120-2127. [16] NIU Y G, DANIEL W C H, LAM J. Robust integral sliding mode control for uncertain stochastic systems with time-varying delay[J]. Automatica, 2005, 41(5):873-880. [17] 杨冬梅, 张庆灵, 姚波. 广义系统[M]. 1版. 北京: 科学出版社, 2004. [18] LU R Q, SU H Y, CHU J. Robust controller design for time-varying uncertain linear singular systems with time-delays[J]. International Journal of Systems Science, 2005, 37(8):973-981. [19] 吴敏, 何勇. 时滞系统鲁棒控制[M]. 1版. 北京: 科学出版社, 2008. [20] XIE L, SOUZA C E. Robust H∞ control for linear systems with norm bounded time-varying uncertainties[J]. IEEE Transactions on Automatic Control, 1992, 37(8):1188-1191. |
[1] | WEI Jian-ming, HU Yun-an, SUN Mei-mei. An adaptive interative learning control of the first-order nonlinear delay system based on generalized tracking error [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(6): 34-41. |
[2] | KONG Xian-Meng, JU Pei-Jun. New stability criterion for a class of uncertain neutral systems with time-varying delay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 48-51. |
[3] | WANG Yan-qing,QIAN Cheng-shan,JIANG Chang-sheng . A delay-dependent robust stability criterion for uncertainneutral systems with time-varying delay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 116-120 . |
|