Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (5): 24-31.doi: 10.6040/j.issn.1672-3961.0.2018.249

• Machine Learning & Data Mining • Previous Articles     Next Articles

Solar cell defect images fusion based on empirical wavelet

Haiyong CHEN(),Li YU*(),Hui LIU,Jiabo YANG,Qidi HU   

  1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China
  • Received:2018-06-07 Online:2018-10-01 Published:2018-06-07
  • Contact: Li YU E-mail:haiyong.chen@hebut.edu.cn;1094141015@qq.com
  • Supported by:
    国家自然科学基金资助项目(61403119);河北省自然科学基金资助项目(F2018202078);河北省科技计划资助项目(17211804D);河北省青年拔尖人才资助项目(210003)

Abstract:

To solve the problem of the weak defect detection of solar cells, a multispectral image fusion algorithm based on 2D tensor empirical wavelet transform was proposed. The image information of solar cells was collected by using a set of specific wavelengths lights, and the noise was suppressed by using top-hat transformation. The preprocessed images were decomposed using empirical wavelet transform, and the obtained subband images of high and low frequency were fused using the saliency rules based on maximum value. The fused subband images of high and low frequency were transformed into the final image through inverse empirical wavelet transform. Cell images of five types of chromatic aberrations were acquired under the same acquisition conditions for testing algorithm, and were compared with other algorithms from two aspects of image visual effect and objective evaluation indexes. The experimental results showed that the proposed algorithm had good adaptability and good performance in the aspects of maintaining spectral information and suppressing noise.

Key words: empirical wavelet, multispectral image fusion, saliency, Top-hat transformation, solar cell

CLC Number: 

  • TP391

Fig.1

The images of the solar cell in a variety of spectra"

Fig.2

The original images grayscale histogram"

Fig.3

The results of each wavelength image pretreatment"

Fig.4

The results of anti-color processing of each wavelength image"

Fig.5

β function image"

Fig.6

Solar cell scratch defect spectrum residual distribution curves"

Fig.7

Defect image and its saliency analysis results"

Fig.8

Overall algorithm architecture"

Table 1

Panel fusion index for different background colors"

电池片颜色融合前各项指标均值 融合后各项指标
信息熵 标准差 清晰度 信息熵 标准差 清晰度
深深蓝 3.39 10.60 1.98 4.08 10.30 2.24
深蓝 3.06 5.36 1.36 4.02 6.72 2.08
3.45 8.98 2.00 4.36 9.90 2.67
浅蓝 3.07 4.80 1.34 3.89 5.19 1.93
浅浅蓝 3.01 3.66 1.21 4.06 5.11 1.89

Fig.9

Multiple algorithms fusion images"

Table 2

The index of fusion images of different algorithms"

算法 信息熵 PSNR 清晰度 标准差
本研究算法 4.36 35.6 2.67 9.90
形态金字塔 4.18 33.6 2.51 9.75
梯度金字塔 3.73 29.3 2.53 8.56
离散小波 4.29 35.2 2.84 9.12
双树复小波 3.98 29.5 2.36 9.32
曲波变换 4.13 32.2 2.62 9.52
非下采样轮廓波变换 4.42 31.5 2.47 9.17
1 周晓波, 程海龙, 贾琦. 图像分块融合算法速度优化处理研究[J]. 北京交通大学学报, 2014, 38 (5): 33- 36.
ZHOU Xiaobo , CHENG Hailong , JIA Qi . Optimization of image block fusion algorithm in speed[J]. Journal of Beijing Jiaotong University, 2014, 38 (5): 33- 36.
2 WANG W , CHANG F . A multi-focus image fusion method based on laplacian pyramid[J]. Journal of Computers, 2011, 6 (12): 2559- 2566.
3 KAVITHA C T , CHELLAMUTHU C , RAJESH R . Medical image fusion using combined discrete wavelet and ripplet transforms[J]. Procedia Engineering, 2012, 38 (38): 813- 820.
4 GILLES J . Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61 (16): 3999- 4010.
doi: 10.1109/TSP.2013.2265222
5 BORJI A , ITTI L . State-of-the-art in visual attention modeling[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2013, 35 (1): 185- 207.
doi: 10.1109/TPAMI.2012.89
6 BORJI A , SIHITE D N , ITTI L . Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study[J]. IEEE Transaction on Image Processing, 2013, 22 (1): 55- 69.
doi: 10.1109/TIP.2012.2210727
7 GOFERMAN S , ZELNIK-MANOR L , TAL A . Context-aware saliency detection[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 34 (10): 1915- 1926.
doi: 10.1109/TPAMI.2011.272
8 HOU Xiaodi, ZHANG Liqing. Saliency detection: a spectral residual approach[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, USA: IEEE Computer Society, 2007: 1-8.
9 BAVIRISETTI D P , DHULI R . Multi-focus image fusion using maximum symmetric surround saliency detection[J]. Elcvia Electronic Letters on Computer Vision & Image Analysis, 2016, 14 (2): 58- 73.
10 QI S , MA J , LI H , et al. Infrared small target enhancement via phase spectrum of quaternion fourier transform[J]. Infrared Physics & Technology, 2014, 62 (2): 50- 58.
11 刘斌, 祝青, 胡福强, 等. 基于采样二通道不可分小波的多光谱图像融合[J]. 电子学报, 2013, 41 (4): 710- 716.
doi: 10.3969/j.issn.0372-2112.2013.04.014
LIU Bin , ZHU Qing , HU Fuqiang , et al. Multi-spectral image fusion method based on sampled two channel non-separable wavelets[J]. Acta Electronica Sinica, 2013, 41 (4): 710- 716.
doi: 10.3969/j.issn.0372-2112.2013.04.014
12 段建民, 战宇辰, 刘冠宇. 基于TopHat分割和曲线模型的三车道检测方法[J]. 北京工业大学学报, 2016, 42 (8): 1174- 1181.
DUAN Jianmin , ZHAN Yuchen , LIU Guanyu . Three-lane detection method based on top-hat segmentation and curve models[J]. Journal of Beijing University of Technology, 2016, 42 (8): 1174- 1181.
13 陈林.基于经验小波变换的多曝光图像融合方法的研究[D].长春:吉林大学, 2017: 30-40
CHEN Lin. Research of multi-exposure image fusion based on empirical wavelet transform[D]. Changchun: Jilin University, 2017: 30-40.
14 王达, 卞红雨. 水下声图像多分辨率融合研究[J]. 武汉大学学报(信息科学版), 2015, 40 (1): 77- 82.
WANG Da , BIAN Hongyu . Underwater acoustic image multiresolution fusion research[J]. Geomatics and Information Science of Wuhan University, 2015, 40 (1): 77- 82.
15 邹勤, 贾永红. 一种基于形态金字塔的遥感影像融合方法及其性能评价[J]. 武汉大学学报(信息科学版), 2006, 30 (11): 971- 974.
ZOU Qin , JIA Yonghong . Fusion of remote sensing images based on morphological pyramid and its performance evaluation[J]. Geomatics and Information Science of Wuhan University, 2006, 30 (11): 971- 974.
16 魏兴瑜, 周涛, 陆惠玲, 等. 基于双树复小波变换的PET/CT自适应融合算法[J]. 计算机科学与探索, 2015, 9 (3): 360- 367.
WEI Xingyu , ZHOU Tao , LU Huiling , et al. Self-adaption fusion algorithm of PET/CT based on dual-tree complex wavelet transform[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9 (3): 360- 367.
17 NAMRATHA H N , RAGHU M T . Remote sensing satellite image fusion using fast curvelet transforms[J]. International Journal of Science and Research, 2015, 1537- 1542.
18 SHEN Y , REN E , DANG J W , et al. A nonsubsampled contourlet transform based medical image fusion method[J]. Information Technology Journal, 2013, 12 (4): 749- 755.
doi: 10.3923/itj.2013.749.755
[1] REN Yongfeng, DONG Xueyu. An image saliency object detection algorithm based on adaptive manifold similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 56-62.
[2] HU Jinge, TANG Yan. Visual saliency detection based on visual center shift [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 27-33.
[3] ZHAI Jiyou, ZHOU Jingbo, REN Yongfeng, WANG Zhijian. A visual saliency detection based on background and foreground interaction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 80-85.
[4] REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 1-6.
[5] LI Chunlei, ZHANG Zhaoxiang, LIU Zhoufeng, LIAO Liang, ZHAO Quanjun. A novel fabric defect detection algorithm based on textural differential visual saliency model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 1-8.
[6] YANG Xiulin1, HUANG Shuo2*, DENG Miao1, ZHANG Jihong1,3. Image fusion method based on saliency computation and adaptive PCNN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 35-42.
[7] CHEN Xu1, ZHANG Ji-hong2, LIU Wei2, LIANG Yong-sheng2. New scalable ROI algorithm based on visual attention [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 15-21.
[8] QIN Jing-yu1, SUN Cheng-shuai1,2, GU Ting-kun3. Influence of the fluctuation of module parameters on the output properties of photovoltaic arrays [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 122-127.
[9] WANG Xiu-fen, WANG Hui-yuan, WANG Song. Underwater object detection based on background subtraction and a saliency map [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 12-16.
[10] .

Electrode decoration and photoelectron recombination in nanocrystalline TiO2 dyesensitized solar cells

[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 87-91.
[11] DONG Shao-guang,FAN Guang-han . The radiation research of electrical and optical properties on InGaN solar cell materials [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 102-106 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MENG Jian, LI Yibin, LI Bin. Bound gait controlling method of quadruped robot[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 28 -34 .
[2] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[3] ZHANG Jianming, LIU Quansheng, TANG Zhicheng, ZHAN Ting, JIANG Yalong. New peak shear strength criterion with inclusion of shear action history[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 77 -81 .
[4] WANG Huan, ZHOU Zhongmei. An over sampling algorithm based on clustering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 134 -139 .
[5] XIAO Qiao, PEI Jihong, WANG Lixia, GONG Zhicheng. Ship detection in remote sensing image based on the fuzzy fusion of multi-channel Gabor filtering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 29 -35 .
[6] MA Xiangming, SUN Xia, ZHANG Qiang. Construction and analysis on typical working cycle of wheel loader[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 82 -87 .
[7] WANG Lanzhong, MENG Wenjie. Video perceptual encryption algorithm in remote education receiver[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(4): 40 -44 .
[8] LIANG Zehua, CUI Yaodong, ZHANG Yu. The one-dimensional cutting stock problem with sequence-dependent cut losses[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 75 -80 .
[9] ZHU Dengyuan, YAO Zhanyong, GE Shouren. Study on buried abutment slope transformation based on numerical simulation and site detections[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 86 -94 .
[10] YE Mingquan, GAO Lingyun, WAN Chunyuan. Gene expression data classification based on artificial bee colony and SVM[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 10 -16 .