JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (2): 78-84.doi: 10.6040/j.issn.1672-3961.0.2015.362
Previous Articles Next Articles
ZHOU Shaowei
CLC Number:
[1] MAO X R, YUAN C G. Stochastic differential equations with Markovian switching[M]. London: Imperial College Press, 2006. [2] YUAN C G, LYGEROS J. On the exponential stability of switching diffusion processes[J]. IEEE Transactions on Automatic Control, 2005, 50(9):1422-1426. [3] YUAN C G, MAO X R. Robust stability and controllability of stochastic differential delay equations with Markovian switching[J]. Automatica, 2004, 40(3):343-354. [4] SHI P, MAHMOUD M, NGUANG S K, et al. Robust filtering for jumping systems with mode-dependent delays[J]. Signal Processing, 2006, 86(1):140-152. [5] COSTA O L V, PAULO W L. Generalized coupled algebraic Riccati equations for discrete-time Markov jump with multiplicative noise systems[C] //Proceedings of the 17th International Federation of Automatic Control World Congress. Seoul: International Federation of Automatic Control, 2008:13480-13485. [6] DOROTO P. Short time stability in linear time-varying systems[C] //Proceedings of the IRE International Convention Record. New York:the IRE International Convention, 1961:83-87. [7] AMATO F, ARIOLA M, DORATO P. Finite-time control of linear systems subject to parametric uncertainties and disturbances[J]. Automatica, 2001, 37(9):1459-1463. [8] AMATO F, ARIOLA M, COSENTINO C. Finite-time stabilization via dynamic output feedback[J]. Automatica, 2006, 42(2):337-342. [9] 冯智辉,邓飞其,刘文辉.一类二次型离散系统的有限时间稳定与镇定[J].华南理工大学学报(自然科学版), 2015, 43(1):9-14. FENG Zhihui, DENG Feiqi, LIU Wenhui. Finite-time stability and stabilization for a class of quadratic discrete-time systems[J]. Journal of South China University of Technology(Natural Science Edition), 2015, 43(1):9-14. [10] 宋申民,郭永,李学辉.航天器姿态跟踪有限时间饱和控制[J].控制与决策, 2015, 30(11):2004-2008. SONG Shenmin, GUO Yong, LI Xuehui. Finite-time attitude tracking control for spacecraft with input saturation[J]. Control and Decision, 2015, 30(11):2004-2008. [11] 董琦,宗群,王芳,等.基于光滑二阶滑模的可重复使用运载器有限时间再入姿态控制[J].控制理论与应用, 2015, 32(4): 448-455. DONG Qi, ZONG Qun, WANG Fang, et al. Finite time smooth second-order sliding-mode controller design for reentry reusable launch vehicle[J]. Control Theory and Applications, 2015, 32(4):448-455. [12] ZHANG W H, AN X Y. Finite-time control of linear stochastic systems[J]. International Journal of Innovative Computing, Information and Control, 2008, 4(3):689-696. [13] 陈云,石伟,邹洪波,等.随机时延系统有限时间静态输出反馈弹性控制[C] //第33届中国控制会议论文集.南京, 中国: 中国控制会议, 2014:4337-4341. CHEN Yun, SHI Wei, ZOU Hongbo, et al. Finite-time static output feedback resilient control of stochastic time-delay systems[C] //Proceedings of the 33rd Chinese Control Conference. Nanjing, China: the CCC, 2014:4337-4341. [14] YAN Z G, ZHANG G S, ZHANG W H. Finite-time stability and stabilization of linear It(^overo)stochastic systems with state and control-dependent noise[J]. Asian Journal of Control, 2013, 15(1):270-281. [15] YAN Z G, ZHANG G S, WANG J K, et al. State and output feedback finite-time guaranteed cost control of linears It(^overo)tochastic systems[J]. Journal of Systems Science and Complexity, 2015, 28(4):813-829. [16] NI Y H, ZHANG W H, FANG H T. On the observability and detectability of linear stochastic systems with Markov jumps and multiplicative noise[J]. Journal of Systems Science and Complexity, 2010, 23(1):102-115. [17] OKSENDAL B. Stochastic differential equations: an introduction with applications [M]. Berlin: Springer, 2003. |
[1] | WU Yanming, WANG Ruiyun, WANG Zhanshan. Fault detection for multi-agent systems based on intermediate observer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 96-102. |
[2] | SHEN Yan-jun1, WU Chao-yan2. Partially asymptotically stable and finite-time stable observer design for a class of chained systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(6): 42-46. |
[3] | ZHOU Li-na1, LIU Xiao-hua2. Robust memory state feedback non-fragile H∞ control of an uncertain neutral stochastic time-delay systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(3): 49-56. |
[4] | HE Rong-fu1, XIAO Min-qing2*. Robust L2-L∞ control of δ operator formulated time-delay systems with disc regional pole constraint [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 69-79. |
[5] |
MA Shi-min, WANG Yu-zhen.
Finite-time stability of a class of generalized Hamiltonian systems with application to control design of nonlinear affine systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(2): 119-125. |
[6] | LIU Guo-cai, LIU Yu-chang, JU Pei-jun. A new delay-dependent global asymptotic stability forneural networks with time-varying delays [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(4): 53-56. |
[7] |
G. Feng and M. Chen.
H∞infinity discrete time fuzzy controller design based on bilinear matrix inequality [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 37-51. |
[8] |
JIAO Jianmin 1, SUN Xiaojun 1, WU Baowei 2.
Guaranteed cost control for uncertain singular timedelay systems with nonlinear perturbation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 64-69. |
[9] |
DENG Xiu-cheng,SHEN Yan-jun,FANG Sheng-le .
An approach to design the finite-time observer for MIMO-linear systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 17-21 . |
[10] | WANG Yan-qing,QIAN Cheng-shan,JIANG Chang-sheng . A delay-dependent robust stability criterion for uncertainneutral systems with time-varying delay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 116-120 . |
|