Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (5): 48-56.doi: 10.6040/j.issn.1672-3961.0.2022.121
• Machine Learning & Data Mining • Previous Articles
NA Xubo, ZHANG Ying*, LI Muyang, CHEN Yuanchang, HUA Yunpeng
CLC Number:
[1] TOQUÉ F, CÔME E, El MAHRSI M K, et al. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks[C] //2016 IEEE 19th International Conference on Intelligent Transportation Systems. New Jersey, USA: IEEE, 2016: 1071-1076. [2] YANG Chao, YAN Fenfan, XU Xiangdong. Daily metro origin-destination pattern recognition using dimensionality reduction and clustering methods[C] //IEEE International Conference on Intelligent Transportation Systems-ITSC. New Jersey, USA: IEEE, 2017:548-553. [3] TONG Yongxin, CHEN Yuqiang, ZHOU Zimu, et al. The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms[C] //KDD'17 Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2017: 1653-1662. [4] YAO Huaxiu, WU Fei, KE Jintao, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C] //32nd AAAI Conference on Artificial Intelligence. Louisiana, USA: AAAI, 2018: 2588-2595. [5] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1393-1402. [6] QIAN X W, UKKUSURI S V, YANG C, et al. Forecasting short-term taxi demand using boosting-GCRF[C] //ACM SIGKDD International Workshop on Urban Computing. New York, USA: ACM, 2017: 256-264. [7] KE Jintao, ZHENG Hongyu, YANG Hai, et al. Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 122(4): 591-608. [8] CHANG Y, ZHAI C X, LIU Y, et al. Predicting multi-step citywide passenger demands using attention-based neural networks[C] //WSDM’18: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2018: 736-744. [9] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C] //Advances in Neural Information Processing Systems. Cambridgeshire, UK: MIT Press, 2015: 802-810. [10] YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C] // International Joint Conference on Artificial Intelligence. California, USA: Morgan Kaufmann, 2018: 3634-3640. [11] SHA Anshu, WANG Bin, WU Xiaofeng. Semi-supervised classification for hyperspectral images using edge-conditioned graph convolutional networks[C] //IEEE International Geoscience and Remote Sensing Symposium.New Jersey, USA: IEEE, 2019: 2690-2693. [12] KIM D, DINH H, MACKUNIS W, et al. A recurrent neural network(RNN)-based attitude control method for a VSCMG-actuated satellite[C] //Proceedings of the American Control Conference. California, USA: IEEE Computer SOC, 2012: 944-949. [13] BAI L, YAO L, SALIL S K, et al. STG2Seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting[C] //International Joint Conference on Artificial Intelligence. California, USA: Morgan Kaufmann, 2019: 1981-1987. [14] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[C] //IEEE Transactions on Intelligent Transportation Systems. New Jersey, USA: IEEE, 2020: 3848-3858. [15] WU Z Z, KING S. Investigating gated recurrent networks for speech synthesis[C] //International Conference on Acoustics Speech and Signal Processing ICASSP. New Jersey, USA: IEEE, 2016: 5140-5144. [16] GUO Shengnan, LIN Youfang, LI Shijie, et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926. [17] WANG M H, STEVEN D S, NATE V B, et al. Estimating dynamic origin-destination data and travel demand using cell phone network data[J]. International Journal of Intelligent Transportation Systems Research, 2013, 11(2): 76-86. [18] KE Jintao, QIN Xiaoran, YANG Hai, et al. Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[J]. Transportation Research Part C: Emerging Technologies, 2021, 122(1): 1879-1889. [19] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 8(9): 1735-1780. [20] ZHOU X S, MAHMASSANI H S. Dynamic origin-destination demand estimation using automatic vehicle identification data[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 105-114. [21] WANG Yuandong, YIN Hongzhi, CHEN Hongxu, et al. Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling[C] //KDD'19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2019: 1227-1235. [22] YAO Huaxiu, TANG Xianfeng, WEI Hua, et al. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[C] //Thirty-third AAAI Conference on Artificial Intelligence. California, USA: Assoc Advancement Artificial Intelligence, 2019: 5668-5675. [23] LIU Lingbo, QIU Zhilin, LI Guanbin, et al. Contextualized spatial-temporal network for taxi origin-destination demand prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10):3875-3887. [24] ZHANG Lingyu, HU Tao, MIN Yue, et al. A taxi order dispatch model based on combinatorial optimization[C] //KDD'17 Proceedings the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2017: 2151-2159. [25] YANG Hai, LAU Yanwin, WONG Sze, et al. A macroscopic taxi model for passenger demand, taxi utilization and level of services[J]. Transportation, 2000, 6(3): 317-340. [26] TAHERI J, ZOMAYA A Y. Artificial neural networks[M]. New York: John Wiley & Sons, Ltd., 2005: 147-185. [27] NASCIMENTO R S, FROES ROBERTA E S, SILVA N. Comparison between ordinary least squares regression and weighted least squares regression in the calibration of metals present in human milk determined by ICP-OES[J]. Talanta, 2010, 80(3): 1102-1109. [28] TIBSHIRANI R. Regression shrinkage and selection via the lasso: a retrospective[J]. Journal of the Royal Statistical Society Series B-Statistical Methodological, 2011, 73(1):273-282. [29] CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C] // KDD'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 785-794. [30] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C] //Advances in Neural Information Processing Systems. California,USA: Neural Information Processing Systems, 2015: 802-810. |
[1] | Ying LI,Jiankun WANG. The classification of mild cognitive impairment based on supervised graph regularization and information fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 65-73. |
[2] | LIU Xing, YANG Lu, HAO Fanchang. Finger vein image retrieval based on multi-feature fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 118-126. |
[3] | YU Yixuan, YANG Geng, GENG Hua. Multimodal hierarchical keyframe extraction method for continuous combined motion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 42-50. |
[4] | HUANG Huajuan, CHENG Qian, WEI Xiuxi, YU Chuchu. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22. |
[5] | LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142. |
[6] | ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua. A technology prediction model based on fuzzy Bayesian networks with sociological factors [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 23-33. |
[7] | WU Yanli, LIU Shuwei, HE Dongxiao, WANG Xiaobao, JIN Di. Poisson-gamma topic model of describing multiple underlying relationships [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 51-60. |
[8] | YU Mingjun, DIAO Hongjun, LING Xinghong. Online multi-object tracking method based on trajectory mask [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 61-69. |
[9] | Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114. |
[10] | Xiaobin XU,Qi WANG,Bin GAO,Zhiyu SUN,Zhongjun LIANG,Shangguang WANG. Pre-allocation of resources based on trajectory prediction in heterogeneous networks [J]. Journal of Shandong University(Engineering Science), 2022, 52(4): 12-19. |
[11] | Yinfeng MENG,Qingfang LI. Recognition learning based on multivariate functional principal component representation [J]. Journal of Shandong University(Engineering Science), 2022, 52(3): 1-8. |
[12] | Xiushan NIE,Yuling MA,Huiyan QIAO,Jie GUO,Chaoran CUI,Zhiyun YU,Xingbo LIU,Yilong YIN. Survey on student academic performance prediction from the perspective of task granularity [J]. Journal of Shandong University(Engineering Science), 2022, 52(2): 1-14. |
[13] | Tongyu JIANG, Fan CHEN, Hongjie HE. Lightweight face super-resolution network based on asymmetric U-pyramid reconstruction [J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 1-8. |
[14] | Jun HU,Dongmei YANG,Li LIU,Fujin ZHONG. Cross social network user alignment via fusing node state information [J]. Journal of Shandong University(Engineering Science), 2021, 51(6): 49-58. |
[15] | Ye LIANG,Nan MA,Hongzhe LIU. Image-dependent fusion method for saliency maps [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 1-7. |
|