[1] |
刘鹏. 智能系统[M]. 北京:电子工业出版社,2020.
|
[2] |
MARTIN B. Technology foresight: a review of recent government exercises[J]. Science, Technology, Industry Review, 1996, 17:15-50.
|
[3] |
SHIN T. Using Delphi for a long-range technology forecasting, and assessing directions of future R&D activities the Korean exercise[J]. Technological Forecasting & Social Change, 1998, 58(1/2):125-154.
|
[4] |
SAVAGE T, DAVIS A, FISCHHOF B, et al. A strategy to improve expert technology forecasts[J]. Proceedings of the National Academy of Sciences, 2021, 118(21): e202- 1558118.
|
[5] |
KIM J, LEE S. Forecasting and identifying multi-technology convergence based on patent data[J]. Scientometrics, 2017, 111:47-65.
|
[6] |
EVANGELISTA A, ARDITO L, BOCCACCIO A, et al. Unveiling the technological trends of augmented reality: a patent analysis[J]. Computers in Industry, 2020, 118: 103221.
|
[7] |
DEHGANI M M, ASLANI A, AHMADI M H, et al. Current status and future forecasting of biofuels technology development[J]. International Journal of Energy Research, 2019, 43(3):1142-1160.
|
[8] |
魏延,杨春颖,王永芳,等. 基于TRIZ理论和LSTM的技术成熟度评估及预测方法[J]. 导弹与航天运载技术,2022,3:153-158. WEI Yan, YANG Chunying, WANG Yongfang, et al. Technology maturity assessment and prediction method based on TRIZ theory and LSTM[J]. Missiles and Space Vehicles, 2022, 3:153-158.
|
[9] |
JANG H J, WOO H G, LEE C. Hawkes process-based technology impact analysis[J]. Journal of Informetrics, 2017, 11(2):511-529.
|
[10] |
GUI M, XU X. Technology forecasting using deep learning neural network: taking the case of robotics[J]. IEEE Access, 2021, 9:53306-53316.
|
[11] |
ZHOU Y, DONG F, LIU Y, et al. Forecasting emerging technologies using data augmentation and deep learning[J]. Scientometrics, 2020, 123:1-29.
|
[12] |
陈伟,林超然,李金秋,等. 基于LDA-HMM的专利技术主题演化趋势分析:以船用柴油机技术为例[J]. 情报学报, 2018,37(7):732-741. CHEN Wei, LIN Chaoran, LI Jinqiu, et al. Analysis of the evolutionary trend of technical topics in patents based on LDA and HMM: taking marine diesel engine technology as an example[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(7):732-741.
|
[13] |
董放,刘宇飞,周源. 基于LDA-SVM论文摘要多分类新兴技术预测[J]. 情报杂志,2017,36(7):40-45. DONG Fang, LIU Yufei, ZHOU Yuan. Prediction of emerging technologies based on LDA-SVM multi-class abstract of paper classification[J]. Journal of Intel-ligence, 2017, 36(7):40-45.
|
[14] |
CHOI S, JUN S. Vacant technology forecasting using new Bayesian patent clustering[J]. Technology Analysis and Strategic Management, 2014, 26(3):241-251.
|
[15] |
ZHOU Y, DONG F, KONG D, et al. Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies[J]. Techno-logical Forecasting and Social Change, 2019, 144(7):205-220.
|
[16] |
李晶, 罗泰晔. 基于文本挖掘的5G技术研究热点分析[J].科技管理研究, 2020, 40(19):160-165. LI Jing, LUO Taiye. Hot research topics analysis of 5G technology based on text mining[J]. Science and Technology Management Research, 2020, 40(19):160-165.
|
[17] |
工业和信息化部. 促进新一代人工智能产业发展三年行动计划[R]. 北京:工业和信息化部, 2017.
|
[18] |
国务院. 新一代人工智能发展规划[R]. 北京:国务院, 2018.
|
[19] |
刘刚. 中国新一代人工智能科技产业发展报告2020[R]. 天津:中国新一代人工智能发展战略研究院, 2020.
|
[20] |
李颋, 田丰. 新一代人工智能白皮书(2020年):产业智能化升级[R]. 重庆:中国电子学会, 中国数字经济百人会, 商汤智能产业研究院, 2020.
|
[21] |
SILBERGLITT R. The global technology revolution 2020[R]. California, USA: Rand Corporation, 2006.
|
[22] |
沈林成. 移动机器人自主控制理论与技术[M]. 北京:科学出版社, 2011.
|
[23] |
HUANG H, PAVEK K, ALBUS J, et al. Autonomy levels for unmanned systems( ALFUS )framework: an update[C] // Proceedings of SPIE 5804: Unmanned Ground Vehicle Technology Ⅶ. Orlando, USA: SPIE Press, 2005: 439-448.
|
[24] |
李欣. 军用无人机行业深度报告[R]. 南昌:中航证券,2017.
|
[25] |
United States Department of Defense. Unmanned systems integrated roadmap 2017-2042[R]. Arlington, USA: United States Department of Defense, 2018.
|