JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (3): 134-139.doi: 10.6040/j.issn.1672-3961.0.2017.416
Previous Articles Next Articles
WANG Huan, ZHOU Zhongmei
CLC Number:
[1] WANG S, YAO X. Multi-class imbalance problems: analysis and potential solutions[J]. IEEE Transactions on Systems Man & Cybernetics: Part B, 2012, 42(4):1119-1130. [2] HE H, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge & Data Engineering, 2009, 21(9):1263-1284. [3] KUMAR M, BHUTANI K, AGGARWAL S. Hybrid model for medical diagnosis using neutrosophic cognitive maps with genetic algorithms[C] //IEEE International Conference on Fuzzy Systems. Istanbul, Turkey: IEEE, 2015:1-7. [4] SRIVASTAVA A, KUNDU A, SURAL S, et al. Credit card fraud detection using hidden Markov model[J]. IEEE Transactions on Dependable & Secure Computing, 2008, 5(1):37-48. [5] LI J, FONG S, MOHAMMED S, et al. Improving the classification performance of biological imbalanced datasets by swarm optimization algorithms[J]. Journal of Supercomputing, 2016, 72(10): 3708-3728. [6] 杨明, 尹军梅, 吉根林. 不平衡数据分类方法综述[J]. 南京师范大学学报(工程技术版), 2008, 8(4): 7-12. YANG Ming, YIN Junmei, JI Genlin. Classification methods on imbalanced data: a survey[J]. Journal of Nanjing Normal University(Engineering and Technology Edition), 2008, 8(4): 7-12. [7] SUN Z, SONG Q, ZHU X, et al. A novel ensemble method for classifying imbalanced data[J]. Pattern Recognition, 2015, 48(5):1623-1637. [8] SAEZ J A, LUENGO J, STEFANWSKI J, et al. SMOTE—IPF: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering[J]. Information Sciences, 2015, 291(5):184-203. [9] RAMENTOL E, CABALLERO Y, BELLO R, et al. SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and under sampling for high imbalanced data-sets using SMOTE and rough sets theory[J]. Knowledge & Information Systems, 2012, 33(2):245-265. [10] BARUA S, ISLAM M M, YAO X, et al. MWMOTE: majority weighted minority over sampling technique for imbalanced data set learning[J]. IEEE Transactions on Knowledge & Data Engineering, 2014, 26(2):405-425. [11] BORAL A, CYGAN M, KOCIUMAKA T, et al. A fast branching algorithm for cluster vertex deletion[J]. Theory of Computing Systems, 2016, 58(2):357-376. [12] FOMIN S, GRIGORIEV D, KOSHEVOY G. Subtraction-free complexity, cluster transformations, and spanning trees[J]. Foundations of Computational Mathematics, 2016, 16(1):1-31. [13] DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1979, 1(2):224. [14] ZENG H J, HE Q C, CHEN Z, et al. Learning to cluster web search results[C] //International ACM SIGIR Conference on Research and Development in Information Retrieval. Sheffield, UK: ACM, 2004:210-217. [15] 胡小生, 张润晶, 钟勇. 一种基于聚类提升的不平衡数据分类算法[J]. 集成技术, 2014(2):35-41. HU Xiaosheng, ZHANG Runjing, ZHONG Yong. A clustering-based enhanced classification algorithm for imbalanced data[J]. Journal of Integration Technology, 2014(2):35-41. [16] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2011, 16(1):321-357. [17] HE H, BAI Y, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C] //IEEE International Joint Conference on Neural Networks. Hoboken, USA: IEEE, 2008:1322-1328. [18] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[J]. Lecture Notes in Computer Science, 2005, 3644(5):878-887. [19] CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTEBoost: improving prediction of the minority class in boosting[J]. Lecture Notes in Computer Science, 2003, 2838:107-119. [20] BUNKHUMPORNPAT C, SINAPIROMSARAN K, LURSINSAP C. Safe-Level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem[C] //Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin, Germany: Springer, 2009:475-482. |
[1] | ZHANG Pu, LIU Chang, WANG Yong. Suggestion sentence classification model based on feature fusion and ensemble learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 47-54. |
[2] | CAO Ya, DENG Zhaohong, WANG Shitong. An radial basis function neural network model based on monotonic constraints [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 127-133. |
[3] | XIE Zhifeng, WU Jiaping, MA Lizhuang. Chinese financial news classification method based on convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 34-39. |
[4] | ZHANG Peirui, YANG Yan, XING Huanlai, YU Xiuying. Incremental multi-view clustering algorithm based on kernel K-means [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 48-53. |
[5] | WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59. |
[6] | CHEN Jiajie, WANG Jinfeng. Method for solving Choquet integral model based on ant colony algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 81-87. |
[7] | DU Xixi, LIU Huafeng, JING Liping. An additive co-clustering for recommendation of integrating social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 96-102. |
[8] | YANG Tianpeng, XU Kunpeng, CHEN Lifei. Coefficient of variation clustering algorithm for non-uniform data [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 140-145. |
[9] | LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1-9. |
[10] | YE Mingquan, GAO Lingyun, WAN Chunyuan. Gene expression data classification based on artificial bee colony and SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 10-16. |
[11] | LI Wei, WANG Zhechao, LI Shucai, DING Wantao, WANG Qi, ZONG Zhi, LIU Keqi. The mechanical properties of the silty clay and the advanced support method in Harbin Metro [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 61-71. |
[12] | PANG Renming, WANG Bo, YE Hao, ZHANG Haifeng, LI Mingliang. Clustering of blast furnace historical data based on PCA similarity factor and spectral clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 143-149. |
[13] | WANG Lei, DENG Xiaogang, CAO Yuping, TIAN Xuemin. Multiblock local Fisher discriminant analysis for chemical process fault classification [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 179-186. |
[14] | LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42. |
[15] | HE Qijia, LIU Zhenbing, XU Tao, JIANG Shujie. MR image classification based on LBP and extreme learning machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 86-93. |
|