JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (3): 140-145.doi: 10.6040/j.issn.1672-3961.0.2017.410
YANG Tianpeng1, XU Kunpeng1, CHEN Lifei1,2*
CLC Number:
[1] 韩家炜,坎伯,裴健.数据挖掘:概念与技术[M]. 3版. 范明,孟小峰,译.北京: 机械工业出版社, 2012. [2] BERKHIN P. A survey of clustering data mining techniques[J]. Grouping Multidimensional Data, 2002, 43(1): 25-71. [3] 孙吉贵.刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1): 48-61. SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research[J]. Journal of Software, 2008, 19(1): 48-61. [4] JAIN A K, MURTY M N, FLYNN P J. Data clustering: a review[J]. Acm Computing Surveys, 1999, 31(3): 264-323. [5] AGGARWAL C C, REDDY C K. Data clustering: algorithms and applications[M]. Boca Raton: CRC press, 2013. [6] HE H, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge & Data Engineering, 2009, 21(9): 1263-1284. [7] KRAWCZYK B. Learning from imbalanced data: open challenges and future directions[J]. Progress in Artificial Intelligence, 2016, 5(4): 1-12. [8] HARTIGAN J A, WONG M A. Algorithm as 136: a K-means clustering algorithm[J]. Journal of the Royal Statistical Society Series C:Applied Statistics, 1979, 28(1): 100-108. [9] XIONG H, WU J, CHEN J. K-means clustering versus validation measures: a data-distribution perspective[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B: Cybernetics, 2009, 39(2): 318-331. [10] WU J, XIONG H, CHEN J. Adapting the right measures for K-means clustering[C] //Proceedings of the the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France: ACM,2009: 877-886. [11] KUMAR C N S, RAO K N, GOVARDHAN A. An empirical comparative study of novel clustering algorithms for class imbalance learning[C] //Proceedings of the Second International Conference on Computer and Communication Technologies(IC3T). Hyderabad, India: Springer India, 2016:181-191. [12] KUMAR N S, RAO K N, GOVARDHAN A, et al. Undersampled K-means approach for handling imbalanced distributed data[J]. Progress in Artificial Intelligence, 2014, 3(1): 29-38. [13] LIANG J, BAI L, DANG C, et al. The K-means-type algorithms versus imbalanced data distributions[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(4): 728-745. [14] MAHAJAN M, NIMBHORKAR P, VARADARAJAN K. The planar K-means problem is NP-hard[J]. Theoretical Computer Science, 2009, 442(8): 274-285. [15] XU L, JORDAN M I. On convergence properties of the EM algorithm for Gaussian mixtures[J]. Neural Computation, 1996, 8(1): 129-151. [16] MCLACHLAN G J, KRISHNAN T. The EM Algorithm and Extensions, Second Edition[M]. New York:[s.n.] , 2007. [17] JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666. [18] BROWN C E. Applied multivariate statistics in geohydrology and related sciences[M]. Berlin: Springer, 1998. [19] EVERITT B. Cambridge dictionary of statistics[M]. Cambridge:Cambridge University Press, 2002. [20] 齐敏. 模式识别导论[M]. 北京:清华大学出版社, 2009. [21] ALOISE D, DESHPANDE A, HANSEN P, et al. NP-hardness of Euclidean sum-of-squares clustering[J]. Machine Learning, 2009, 75(2): 245-248. [22] DENG Z H, CHOI K S, CHUNG F L, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J]. Pattern Recognition, 2010, 43(3): 767-781. [23] LI X, CHEN Z,YANG F. Exploring of clustering algorithm on class-imbalanced data[C] //Proceedings of the 8th International Conference on Computer Science & Education(ICCSE). Columbo, Sri Lanka: IEEE, 2013:89-93. [24] CHEN L, JIANG Q, WANG S. A probability model for projective clustering on high dimensional data[C] //Eighth IEEE International Conference on Data Mining. Pisa, Italy: IEEE Computer Society, 2008:755-760. [25] STREHL A, GHOSH J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3(3): 583-617. [26] 陈黎飞, 吴涛. 数据挖掘中的特征约简[M]. 北京: 科学出版社, 2016. |
[1] | ZHANG Peirui, YANG Yan, XING Huanlai, YU Xiuying. Incremental multi-view clustering algorithm based on kernel K-means [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 48-53. |
[2] | DU Xixi, LIU Huafeng, JING Liping. An additive co-clustering for recommendation of integrating social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 96-102. |
[3] | XIAO Miaomiao, WEI Benzheng, YIN Yilong. A hybrid intrusion detection system based on BFOA and K-means algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 115-119. |
[4] | PANG Renming, WANG Bo, YE Hao, ZHANG Haifeng, LI Mingliang. Clustering of blast furnace historical data based on PCA similarity factor and spectral clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 143-149. |
[5] | ZHOU Wang, ZHANG Chenlin, WU Jianxin. Qualitative balanced clustering algorithm based on Hartigan-Wong and Lloyd [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 37-44. |
[6] | JI Xingquan, HAN Guozheng, LI Kejun, FU Rongrong, ZHU Yanghe. Application of improved K-means clustering algorithm based on density in distribution network block partitioning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 41-46. |
[7] | LI Shuo, SHI Yuliang. The method of spot cluster recommendation in location-based social networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 44-50. |
[8] | JIANG Feng, DU Junwei, LIU Guozhu, SUI Yuefei. A weight-based initial centers selection algorithm for K-modes clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 29-34. |
[9] | FAN Shuyan, DING Shifei. An improved multi-scale Graph cut algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 28-33. |
[10] | XU Pingan, TANG Yan, SHI Jiaokai, ZHANG Huirong. K-Means clustering algorithm based on the Schrödinger equation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 34-41. |
[11] | ZHU Hong, DING Shifei. Twice clustering method based on variable granularity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 1-6. |
[12] | DONG Hongbin, ZHANG Guangjiang, PANG Jinwei, HAN Qilong. A clustering ensemble algorithm based on co-evolution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 1-9. |
[13] | HAO Qingbo, MU Shaomin, YIN Chuanhuan, CHANG Tengteng, CUI Wenbin. An algorithm of fast local support vector machine based on clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 13-18. |
[14] | YAO Huachuan, WANG Lizhen, WU Pingping, ZOU Muquan. AC_SAR: actionable clustering algorithm based on strong association rule [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 38-46. |
[15] | SI Junshu, ZHU Wenxing*, SHA Yonghe. A comprehensive method for traffic lights detection in complex background [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 64-68. |
|