JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (5): 21-28.doi: 10.6040/j.issn.1672-3961.1.2016.215
Previous Articles Next Articles
DENG Guanlong1, YANG Hongyong1, ZHANG Shuning1, GU Xingsheng2
CLC Number:
[1] BONNEY M C, GUNDRY S W. Solutions to the constrained flowshop sequencing problem[J]. Operational Research Quarterly, 1976, 27(4):869-883. [2] 张飞, 耿红琴. 基于混沌粒子群算法的车间作业调度优化[J]. 山东大学学报(工学版), 2013, 43(3):19-37. ZHANG Fei, GENG Hongqin. Optimization of job-shop scheduling problem based on chaos particle swarm optimization algorithm[J]. Journal of Shandong Universtiy(Engineering Science), 2013, 43(3):19-37. [3] RAJENDRAN C. A no-wait flowshop scheduling heuristic to minimize makespan[J]. Journal of the Operational Research Society, 1994, 45(4):472-478. [4] GANGADHARAN R, RAJENDRAN C. Heuristic algorithms for scheduling in the no-wait flowshop[J]. International Journal of Production Economics, 1993, 32(3):285-290. [5] SCHUSTER C J, FRAMINAN J M. Approximate procedure for no-wait job shop scheduling[J]. Operations Research Letters, 2003, 31(4):308-318. [6] GRABOWSKI J, PEMPERA J. Some local search algorithms for no-wait flow-shop problem with makespan criterion[J]. Computers and Operations Research, 2005, 32(8):2197-2212. [7] 潘全科, 王文宏, 朱剑英. 解决无等待流水车间调度问题的离散粒子群优化算法[J]. 计算机集成制造系统, 2007, 13(6):1127-1136. PAN Quanke, WANG Wenhong, ZHU Jianying. Modified discrete particle swarm optimization algorithm for no-wait flow shop problem[J]. Computer Integrated Manufacturing Systems, 2007, 13(6):1127-1136. [8] PAN Q K, TASGETIREN M F, LIANG Y C. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem[J]. Computers and Operations Research, 2008, 35(9):2807-2839. [9] 张其亮, 陈永生. 基于混合粒子群-NEH算法求解无等待柔性流水车间调度问题[J]. 系统工程理论与实践, 2014, 34(3):802-809. ZHANG Qiliang, CHEN Yongsheng. Hybrid PSO-NEH algorithm for solving no-wait flexible flow shop scheduling problem[J]. Systems Engineering Theory and Practice, 2014, 34(3):802-809. [10] QIAN B, WANG L, HU Rong, et al. A DE-based approach to no-wait flow-shop scheduling[J]. Computers and Industrial Engineering, 2009, 57(3):787-805. [11] DAVENDRA D, ZELINKA I, BIALIC-DAVENDRA M, et al. Discrete self-organising migrating algorithm for flow-shop scheduling with no-wait makespan[J]. Mathematical and Computer Modelling, 2013, 57(1):100-110. [12] DING J Y, SONG S J, GUPTA J N D, et al. An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem[J]. Applied Soft Computing, 2015, 30:604-613. [13] 潘全科, 赵保华, 屈玉贵, 等. 一类解决无等待流水车间调度问题的蚁群算法[J]. 计算机集成制造系统, 2007, 13(9):1801-1815. PAN Quanke, ZHAO Baohua, QU Yugui, et al. Ant-colony heuristic algorithm for no-wait flow shop problem with makespan criterion[J]. Computer Integrated Manufacturing Systems, 2007, 13(9):1801-1815. [14] GAO K Z, PAN Q K, LI J Q. Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(5):683-692. [15] GAO K Z, PAN Q K, LI J Q, et al. A hybrid harmony search algorithm for the no-wait flow-shop scheduling problems[J]. Asia-Pacific Journal of Operational Reaearch, 2012, 29(2):1250012.1-1250012.23. [16] AKHSHABI M, TAVAKKOLI-MOGHADDAM R, RAHNAMAY-ROODPOSHTI F. A hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling problem with the total flow time[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(5):1181-1188. [17] GAO K, PAN Q K, SUGANTHAN P N, et al. Effective heuristics for the no-wait flow shop scheduling problem with total flow time minimization[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9):1563-1572. [18] SAPKAL S U, LAHA D. A heuristic for no-wait flow shop scheduling[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(5):1327-1338. [19] LAHA D, SAPKAL S U. An improved heuristic to minimize total flow time for scheduling in the m-machine no-wait flow shop[J]. Computers and Industrial Engineering, 2014, 67(1):36-43. [20] ALLAHVERDI A, ALDOWAISAN T. No-wait flowshops with bicriteria of makespan and maximum lateness[J]. European Journal of Operational Research, 2004, 152(1):132-147. [21] TAVAKKOLI-MOGHADDAM R, RAHIMI-VAHED A, MIRZAEI A H. A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness[J]. Information Sciences, 2007, 177(22):5072-5090. [22] QIAN B, WANG L, HUANG D X, et al. Multi-objective no-wait flowshop scheduling with a memetic algorithm based on differential evolution[J]. Soft Computing, 2009, 13(8):847-869. [23] PAN Q K, WANG L, QIAN B. A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems[J]. Computers and Operations Research, 2009, 36(8):2498-2511. [24] 杨隆浩, 傅仰耿, 巩晓婷. 置信规则库参数学习的并行差分进化算法[J]. 山东大学学报(工学版), 2015, 45(1):30-36. YANG Longhao, FU Yanggeng, GONG Xiaoting. Parallel differential evolution algorithm for parameter learning of belief rule base[J]. Journal of Shandong Universtiy(Engineering Science), 2015, 45(1):30-36. [25] 邱晓红, 胡玉婷, 李渤. 求解多处理器任务调度问题的改进差分进化算法[J]. 控制与决策, 2016, 31(2):217-224. QIU Xiaohong, HU Yuting, LI Bo. Multiprocessor task scheduling based on improved differential evolution algorithm[J]. Control and Decision, 2016, 31(2):217-224. [26] WANG L, PAN Q K, TASGETIREN M F. Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms[J]. Expert Systems with Applications, 2010, 37(12):7929-7936. [27] DENG G L, XU Z H, GU X S. A discrete artificial bee colony algorithm for minimizing the total flow time in the blocking flow shop scheduling[J]. Chinese Journal of Chemical Engineering, 2012, 20(6):1067-1073. [28] LIN S W, YING K C. Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start simulated-annealing algorithm[J]. Computers and Operations Research, 2013, 40(6):1625-1647. [29] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. |
[1] | ZHANG Shuangsheng, QIANG Jing, LIU Xikun, LIU Hanhu, ZHU Xueqiang. Inverse problems of pollution source identification based on Bayesian-DE [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 131-136. |
[2] | PEI Xiaobing, CHEN Huifen, ZHANG Baizhan, CHEN Menghui. Improved bi-variables estimation of distribution algorithms for multi-objective permutation flow shop scheduling problem [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 25-30. |
[3] | YANG Longhao, FU Yanggeng, GONG Xiaoting. Parallel differential evolution algorithm for parameter learning of belief rule base [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 30-36. |
[4] | LIANG Xingjian, ZHAN Zhihui. Improved genetic algorithm based on the dual-mode mutation strategy [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 1-7. |
[5] | LIU Chun-an. A dynamic multi-objective optimization evolutionary algorithm based on estimation of core distribution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 167-172. |
[6] | LI Ming, LI Qi-qiang, GUO Qing-qiang, DING Ran. Scheduling optimization model of refinery processes based on production characteristics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 51-56. |
[7] | JIA Mao-Sen, GUO Qiang-Jiang, ZHANG Bin. Algorithm for generalized disjunctive programming model of production scheduling [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(6): 53-57. |
[8] | QU Yan-peng, CHEN Song-ying, YANG Xin-zhen, XIE Fu-chao, LI Wen-feng, SONG Xiu-qin. Multi-objective optimization for the geometrical parameters of the low-specific-speed centrifugal impeller [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 103-105. |
|