JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2015, Vol. 45 ›› Issue (1): 30-36.doi: 10.6040/j.issn.1672-3961.1.2014.212

Previous Articles     Next Articles

Parallel differential evolution algorithm for parameter learning of belief rule base

YANG Longhao1, FU Yanggeng1, GONG Xiaoting2   

  1. 1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, Fujian, China;
    2. College of Economics and Management, Fuzhou University, Fuzhou 350116, Fujian, China
  • Received:2014-03-26 Revised:2014-10-15 Published:2014-03-26
  • Contact: 巩晓婷(1982-),女,河南漯河人,讲师,硕士,主要研究方向为不确定多准则决策,信息隐藏技术等.E-mail:xtgong@126.com E-mail:xtgong@126.com

Abstract: To solve the problem of the existing parameter learning approaches for Belief Rule Base (BRB) were mainly serial algorithms, and those approaches were unsuitable for handling parameter optimization model under the big data. The differential evolution algorithm of swarm intelligence algorithms and the distributed method of cluster systems were introduced to the BRB, and then a parallel parameter learning approach using message passing interface was proposed. A numeric example of the pipeline leak detection problem was given. The new approach was compared with the existing parameter approaches in terms of the convergence error, the speedup ratio and the efficiency of parallel algorithm with different nodes of the cluster system. The experimental results showed that the approach was feasibilitiness and effectiveness.

Key words: message passing interface, pipeline leak detection, belief rule base, differential evolution algorithm, parallel algorithm, parameter learning, cluster system

CLC Number: 

  • TP18
[1] DEMPSTER A P. A generalization of bayesian inference[J]. Journal of the Royal Statistical Society-Series B(Methodological), 1968, 30(2): 205-247.
[2] SHAFER G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976.
[3] HUANG C L, YONG K S. Methods for multiple attribute decision making[M]. Berlin: Springer Berlin Heidelberg, 1981: 58-191.
[4] ZADEH L Z. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
[5] SUN R. Robust reasoning: integrating rule-based and similarity-based reasoning[J]. Artificial Intelligence, 1995, 75(2): 241-295.
[6] YANG J B, LIU J, WANG J, et al. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J]. IEEE Transaction on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2006, 37(4): 569-585.
[7] LIU J, YAMG J B, RUAN D, et al. Self-tuning of fuzzy belief rule bases for engineering system safety analysis[J]. Annals of Operations Research, 2008, 163(1): 143-168.
[8] YANG J B, LIU J, XU D L, et al. Optimization models for training belief-rule-based systems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2007, 37(4): 569-585.
[9] ZHOU Z J, HU C H, YANG J B, et al. Online updating belief-rule-based system for pipeline leak detection under expert intervention[J]. Expert Systems with Applications, 2009, 36(4): 7700-7709.
[10] CHEN Y W, YANG J B, XU D L, et al. Inference analysis and adaptive training for belief rule based system[J]. Expert System with Applications, 2011, 38(10):12845-12860.
[11] 常瑞, 王红卫, 杨剑波. 基于梯度法和二分法的置信规则库参数训练方法[J]. 系统工程, 2007, 25(增刊): 287-291. CHANG Rui, WANG Hongwei, YANG Jianbo. An algorithm for training parameters in belief rule-bases based on the gradient and dichotomy methods[J]. System Engineering, 2007, 25(S):287-291.
[12] ZHOU Z J, HU C H, YANG J B, et al. Online updating belief-rule-base using the RIMER approach[J]. IEEE transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2011, 41(6):1225-1243.
[13] CHANG L L, LI M J, JIANG J, et al. Parameter learning for the belief rule base system in the residual life probability prediction of metalized film capacitor[J]. European Journal of Operational Research, 2015, 73(1):69-80.
[14] PRICE K, STOM R M. LAMPINEN J A. Differential evolution: a practical approach to global optimization[M]. Berlin:Springer, 2005.
[15] XU D L, LIU J, YANG J B, et al. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection[J]. Expert Systems with Applications. 2007, 32(1): 103-113.
[16] WANG Y M, YANG J B, XU D L, et al. The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees[J]. European Journal of Operational Research, 2006(175):35-66.
[17] 马昌凤. 最优化方法及其Matlab程序设计[M]. 北京:科学出版社, 2010.
[18] 李建中, 刘显敏. 大数据的一个重要方面:数据可用性[J]. 计算机研究与发展,2013, 50(6): 1147-1162. LI Jianzhong, LIU Xianmin. An important aspect of big data: data usability[J]. Journal of Computer Research and Development, 2013, 50(6):1147-1162.
[19] 张蕾. 基于并行PSO的模式分类算法及其应用研究[D]. 济南:济南大学, 2005. ZHANG Lei. Based on the pattern classification of parallel PSO algorithm and its application research[D]. Jinan:Jinan University, 2005.
[20] YANG Z Y, LI X L, BOWERS C P, et al. An efficient evolutionary approach to parameter identification on a building thermal model[J]. IEEE Transactions System Man Cybernetics Part C-Applications and Reviews, 2007, 42(6):957-969.
[21] HE R J, YANG Z Y. Differential evolution with adaptive mutation and parameter control using levy probability distribution[J]. Journal of Computer Science and Technology, 2012, 27(5):1035-1055.
[1] ZHANG Shuangsheng, QIANG Jing, LIU Xikun, LIU Hanhu, ZHU Xueqiang. Inverse problems of pollution source identification based on Bayesian-DE [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 131-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!