DBSCAN(densitybased spatial clustering of applications with noise)算法是基于密度的经典聚类算法,但是该算法应用于高维数据时,常用距离函数不能很好地反映出数据点之间的关系, 从而可能导致聚类簇不够精确。如果能在高维空间中采用合适的距离度量,将会改善聚类结果。针对上述问题,提出利用近似EMD(earth mover’s distance,堆土机距离)作为距离测度,通过迭代搜索的方法找出所有直接密度可达对象实现聚类。实验结果表明:在高维文本数据的聚类中,和原来算法相比,改进算法的正确率提高了6%,两者在时间上相差不大;而对低维的Iris数据,改进算法通过EMD改善了实体间的相似性度量,减少了划分为噪声点的数据点个数,平均正确率提高了10%。实验结果表明了改进算法对高维数据的有效性,并可以改善聚类性能。