目前基于视频图像的火灾识别系统是大空间场景中预防火灾的有效方法。为了提高检测性能,基于火焰特定的纹理结构,使用多尺度纹理特征,以获得更全面的特征信息。首先使用火焰的明亮特性定位到疑似火焰区域;然后针对这些区域,采用局部二值模式(local binary patterns, LBP)方法提取多尺度纹理特征;最后将多尺度LBP纹理特征输入到支持向量机(support vector machine, SVM)中进行识别。实验结果表明,该方法计算简单,火焰的检测率较高,误警率较低。
因为基于Web数据挖掘的商品价格预测的准确率都不高,所以为了提高价格预测的准确率,提出了一种基于线性插补与自适应滑动窗口的商品价格预测方法,给出了将线性数据插补方法与自适应滑动窗口结合的商品价格预测模型,并将该商品价格预测模型应用于手机与黄金价格的预测。实验结果表明,该预测模型获得了99%以上的预测准确率,提高了网页商品价格数据抽取的抗噪性能,解决了现有销售商只有历史销售价格数据没有基于多个销售商的预测价格问题,可以为商品的市场预测与分析提供依据。