针对现有入侵检测算法中特征提取不充分、未考虑特征权重的影响、模型分类不够精确等问题,提出一种基于改进ReliefF算法的入侵检测模型。通过优化入侵数据特征权重计算,提出改进的ReliefF算法;根据计算特征的Pearson相关系数,建立特征相关性量表。只保留其中一个相关性高的特征,以实现特征的二次优化;对最优特征子集分别使用决策树(decision tree,DT)、k-最近邻(k-nearest neighbor,KNN)、随机森林(random forest,RF)、朴素贝叶斯(naive bayes,NB)和支持向量机(support vector machine,SVM)5种分类器评价该方法的分类性能和准确性。在NSL-KDD和UNSW-NB15两个数据集上的试验结果表明,该方法不仅具有较好的检测性能,还能有效降低特征维度,对分类器的计算复杂度有积极的影响。