山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (2): 23-33.doi: 10.6040/j.issn.1672-3961.0.2022.255
张豪,李子凌,刘通,张大伟,陶建华*
ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua*
摘要: 为研究诸如无人机等新兴信息科学的未来发展趋势,更好地把握这些技术发展与应用情况的动态并及时调整发展战略,在专家系统框架下提出一种基于模糊贝叶斯网的技术趋势预测方法,有效预测无人机技术在未来10 a的发展趋势。在构建预测方案的过程中,结合领域专家的知识,设计若干影响技术发展的维度用作预测参数,不仅包括技术型指标,也包括社会型指标,从而融合更加丰富的信息,使预测结果更加专业可信。提出基于模糊贝叶斯网的技术预测模型,分别对两种类型指标的影响程度进行综合计算形成推理机,使预测结果更加直观精细,具备一定的解释性。对预测模型的结果进行详细分析,并结合其他模型进行对比评价,结果与已有的专业预测结果相符合。试验结果表明,对无人机技术未来10 a发展趋势的预测中,基于模糊贝叶斯网的技术预测模型能够获取影响因素之间的关联关系,具有更好的预测效果。
中图分类号:
[1] | 刘鹏. 智能系统[M]. 北京:电子工业出版社,2020. |
[2] | MARTIN B. Technology foresight: a review of recent government exercises[J]. Science, Technology, Industry Review, 1996, 17:15-50. |
[3] | SHIN T. Using Delphi for a long-range technology forecasting, and assessing directions of future R&D activities the Korean exercise[J]. Technological Forecasting & Social Change, 1998, 58(1/2):125-154. |
[4] | SAVAGE T, DAVIS A, FISCHHOF B, et al. A strategy to improve expert technology forecasts[J]. Proceedings of the National Academy of Sciences, 2021, 118(21): e202- 1558118. |
[5] | KIM J, LEE S. Forecasting and identifying multi-technology convergence based on patent data[J]. Scientometrics, 2017, 111:47-65. |
[6] | EVANGELISTA A, ARDITO L, BOCCACCIO A, et al. Unveiling the technological trends of augmented reality: a patent analysis[J]. Computers in Industry, 2020, 118: 103221. |
[7] | DEHGANI M M, ASLANI A, AHMADI M H, et al. Current status and future forecasting of biofuels technology development[J]. International Journal of Energy Research, 2019, 43(3):1142-1160. |
[8] | 魏延,杨春颖,王永芳,等. 基于TRIZ理论和LSTM的技术成熟度评估及预测方法[J]. 导弹与航天运载技术,2022,3:153-158. WEI Yan, YANG Chunying, WANG Yongfang, et al. Technology maturity assessment and prediction method based on TRIZ theory and LSTM[J]. Missiles and Space Vehicles, 2022, 3:153-158. |
[9] | JANG H J, WOO H G, LEE C. Hawkes process-based technology impact analysis[J]. Journal of Informetrics, 2017, 11(2):511-529. |
[10] | GUI M, XU X. Technology forecasting using deep learning neural network: taking the case of robotics[J]. IEEE Access, 2021, 9:53306-53316. |
[11] | ZHOU Y, DONG F, LIU Y, et al. Forecasting emerging technologies using data augmentation and deep learning[J]. Scientometrics, 2020, 123:1-29. |
[12] | 陈伟,林超然,李金秋,等. 基于LDA-HMM的专利技术主题演化趋势分析:以船用柴油机技术为例[J]. 情报学报, 2018,37(7):732-741. CHEN Wei, LIN Chaoran, LI Jinqiu, et al. Analysis of the evolutionary trend of technical topics in patents based on LDA and HMM: taking marine diesel engine technology as an example[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(7):732-741. |
[13] | 董放,刘宇飞,周源. 基于LDA-SVM论文摘要多分类新兴技术预测[J]. 情报杂志,2017,36(7):40-45. DONG Fang, LIU Yufei, ZHOU Yuan. Prediction of emerging technologies based on LDA-SVM multi-class abstract of paper classification[J]. Journal of Intel-ligence, 2017, 36(7):40-45. |
[14] | CHOI S, JUN S. Vacant technology forecasting using new Bayesian patent clustering[J]. Technology Analysis and Strategic Management, 2014, 26(3):241-251. |
[15] | ZHOU Y, DONG F, KONG D, et al. Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies[J]. Techno-logical Forecasting and Social Change, 2019, 144(7):205-220. |
[16] | 李晶, 罗泰晔. 基于文本挖掘的5G技术研究热点分析[J].科技管理研究, 2020, 40(19):160-165. LI Jing, LUO Taiye. Hot research topics analysis of 5G technology based on text mining[J]. Science and Technology Management Research, 2020, 40(19):160-165. |
[17] | 工业和信息化部. 促进新一代人工智能产业发展三年行动计划[R]. 北京:工业和信息化部, 2017. |
[18] | 国务院. 新一代人工智能发展规划[R]. 北京:国务院, 2018. |
[19] | 刘刚. 中国新一代人工智能科技产业发展报告2020[R]. 天津:中国新一代人工智能发展战略研究院, 2020. |
[20] | 李颋, 田丰. 新一代人工智能白皮书(2020年):产业智能化升级[R]. 重庆:中国电子学会, 中国数字经济百人会, 商汤智能产业研究院, 2020. |
[21] | SILBERGLITT R. The global technology revolution 2020[R]. California, USA: Rand Corporation, 2006. |
[22] | 沈林成. 移动机器人自主控制理论与技术[M]. 北京:科学出版社, 2011. |
[23] | HUANG H, PAVEK K, ALBUS J, et al. Autonomy levels for unmanned systems( ALFUS )framework: an update[C] // Proceedings of SPIE 5804: Unmanned Ground Vehicle Technology Ⅶ. Orlando, USA: SPIE Press, 2005: 439-448. |
[24] | 李欣. 军用无人机行业深度报告[R]. 南昌:中航证券,2017. |
[25] | United States Department of Defense. Unmanned systems integrated roadmap 2017-2042[R]. Arlington, USA: United States Department of Defense, 2018. |
[1] | 刘新锋, 张旖旎,徐惠三,宋玲,陈梦雅. 基于随机森林和专家系统的分布式光伏电站阴影遮挡诊断[J]. 山东大学学报 (工学版), 2021, 51(2): 98-104. |
[2] | 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
[3] | 周风余,吴爱国,李贻斌, . 110kV输电线路巡线机器人控制方法及实现[J]. 山东大学学报(工学版), 2007, 37(6): 31-35 . |
|