您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (2): 102-108.doi: 10.6040/j.issn.1672-3961.0.2022.321

• • 上一篇    下一篇

基于批归一化统计量的无源多领域自适应方法

刘子一,崔超然*,孟凡安,林培光   

  1. 山东财经大学计算机科学与技术学院, 山东 济南250014
  • 收稿日期:2022-09-26 出版日期:2023-04-22 发布日期:2023-04-21
  • 作者简介:刘子一(1999— ),女,山东滨州人,硕士研究生,主要研究方向为机器学习、迁移学习. E-mail:liu_zi_yi1999@163.com. *通信作者简介:崔超然(1987— ),男,山东济南人,博士,教授,博士生导师,主要研究方向为机器学习、数据挖掘、多媒体信息处理. E-mail:crcui@sdufe.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(62077033);山东省“泰山学者”工程项目(tsqn202211199);山东省高等学校优势学科人才团队培育计划

Multi-source-free domain adaptation with batch normalization statistics

LIU Ziyi, CUI Chaoran*, MENG Fan'an, LIN Peiguang   

  1. School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, Shandong, China
  • Received:2022-09-26 Online:2023-04-22 Published:2023-04-21

摘要: 为解决传统的领域自适应方法训练期间源域数据并不总是可用这一问题,提出一种无源多领域自适应方法,有效完成当存在领域漂移现象时的图像分类任务。通过最小化源域和目标域数据的批归一化统计量距离减小域之间的分布差异,解决因无法访问源域数据而无法显式对齐源域与目标域的问题;采用基于近邻聚合策略的伪标签分类器辅助生成更加准确的伪标签,提高模型预测的准确性;通过学习最优的融合权重,将多个自适应后的源域模型进行有效融合。构建基于批归一化统计量的无源多领域自适应模型。性能对比试验和消融试验结果表明,与多个基线模型相比,本研究方法预测准确性提高0.6%~3.7%。

关键词: 领域自适应, 无源式, 批归一化, 伪标签, 多源域

中图分类号: 

  • TP183
[1] LUO Y, ZHENG L, GUAN T, et al. Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 2507-2516.
[2] LIANG J, HU D P, FENG J S. Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation[C] //Proceedings of International Conference on Machine Learning. Vienna, Austria: PMLR, 2020: 6028-6039.
[3] HUANG J X, GUAN D Y, XIAO A R, et al. Model adaptation:historical contrastive learning for unsupervised domain adaptation without source data[J]. Advances in Neural Information Processing Systems, 2021, 34: 3635-3649.
[4] ISHII M, SUGIYAMA M. Source-free domain adaptation via distributional alignment by matching batch normalization statistics[EB/OL].(2022-04-24)[2022-09-25]. https://arxiv.org/abs/2101.10842.
[5] LIANG J, HU D P, FENG J S. Domain adaptation with auxiliary target domain-oriented classifier[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 16632-16642.
[6] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communi-cations of the ACM, 2020, 63(11): 139-144.
[7] LI J J, CHEN E P, DING Z M, et al. Cycle-consistent conditional adversarial transfer networks[C] //Proceedings of the 27th ACM International Conference on Multimedia. Nice, France: ACMM, 2019: 747-755.
[8] HOFFMAN J, TZENG E, PARK T, et al. CyCADA:cycle-consistent adversarial domain adaptation[C] // International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018: 1989-1998.
[9] KURMI V K, SUBRAMANIAN V K, NAMBOODIRI V P. Domain impression:a source data free domain adaptation method[C] //Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, USA: IEEE, 2021: 615-625.
[10] LI R, JIAO Q F, CAO W M, et al. Model adaptation:unsupervised domain adaptation without source data[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020: 9641-9650.
[11] AHMED S M, RAYCHAUDHURI D S, PAUL S, et al. Unsupervised multi-source domain adaptation without access to source data[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 10103-10112.
[12] DONG J H, FANG Z, LIU A J, et al. Confident anchor-induced multi-source free domain adaptation[J]. Advances in Neural Information Processing Systems, 2021, 34: 2848-2860.
[13] HOFFMAN J, MOHRI M, ZHANG N. Algorithms and theory for multiple-source adaptation[J]. Advances in Neural Information Processing Systems, 2018, 31: 8246-8256.
[14] ZHONG Z, ZHENG L, LUO Z M, et al. Invariance matters: exemplar memory for domain adaptive person re-identification[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 598-607.
[15] GUO C, PLEISS G, SUN Y, et al. On calibration of modern neural networks[C] //Proceedings of International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 1321-1330.
[16] LEE D H. Pseudo-label:the simple and efficient semi-supervised learning method for deep neural networks[C] //Proceedings of Workshop on Challenges in Representation Learning, ICML. Atlanta, USA: PMLR, 2013, 3(2): 896.
[17] GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C] //2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012: 2066-2073.
[18] VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 5018-5027.
[19] YANG S, WANG Y, VAN DE WEIJER J, et al. Unsupervised domain adaptation without source data by casting a bait[EB/OL].(2021-10-29)[2022-09-25]. https://arxiv.org/abs/2010.12427.
[20] KIM Y, CHO D, HAN K, et al. Domain adaptation without source data[J]. IEEE Transactions on Artificial Intelligence, 2021, 2(6): 508-518.
[1] 徐芊芊,许倩,徐华畅,赵钰琳,徐凯,朱红. 基于CnViT的胶质瘤IDH1突变状态智能预测方法[J]. 山东大学学报 (工学版), 2023, 53(2): 127-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨国辉1,孙晓瑜1,2,椿范立1. 应用沸石胶囊催化剂制备生物汽油(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 92 -97 .
[2] 赵伟,艾洪奇. pH对Aβ42小纤维的结构影响[J]. 山东大学学报(工学版), 2018, 48(2): 134 -138 .
[3] 钟倩倩,岳钦艳*,李倩,李颖,许醒,高宝玉. 改性麦草秸秆对活性艳红的吸附动力学研究[J]. 山东大学学报(工学版), 2011, 41(1): 133 -139 .
[4] 吉兴全,韩国正,李可军,傅荣荣,朱仰贺. 基于密度的改进K均值聚类算法在配网区块划分中的应用[J]. 山东大学学报(工学版), 2016, 46(4): 41 -46 .
[5] 徐振,李德明,王彬,詹谷益,张世杰. 硬岩隧道纯钢纤维混凝土管片应用[J]. 山东大学学报 (工学版), 2020, 50(5): 44 -49 .
[6] 闫睿一,董震,鲁森,赖艳华,吕明新. 通风柜下侧挡板和导流板对流场的影响分析[J]. 山东大学学报 (工学版), 2021, 51(5): 122 -130 .
[7] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .
[8] 刘云,邱晓国 . 内插TOC系数法测定水体中COD研究[J]. 山东大学学报(工学版), 2007, 37(4): 108 -117 .
[9] 顿月芹 闵越 袁建生. 阵列侧向测井正演响应的特性分析[J]. 山东大学学报(工学版), 2010, 40(1): 121 -125 .
[10] 田文,胡明华. 概率空域拥挤管理模型与方法[J]. 山东大学学报(工学版), 2010, 40(6): 41 -47 .