您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 210-213.doi: 10.6040/j.issn.1672-3961.0.2021.259

• 其他 • 上一篇    下一篇

复合地层TBM隧道管片受力特征

郑卫琴1(),许杰1,孙杰2,武科2   

  1. 1. 山东省第七地质矿产勘查院, 山东 临沂 276000
    2. 山东大学土建与水利学院, 山东 济南 250061
  • 收稿日期:2021-05-24 出版日期:2022-08-20 发布日期:2022-08-24
  • 作者简介:郑卫琴(1976—),女,陕西安康人,高级工程师,主要研究方向为岩土工程勘察、设计、施工、水工环地质。E-mail:1010073862@qq.com
  • 基金资助:
    山东省重点研发计划资助项目(2018GHY115015)

Mechanical characteristics of TBM tunnel segment in composite stratum

Weiqin ZHENG1(),Jie XU1,Jie SUN2,Ke WU2   

  1. 1. The 7th Institute of Geology & Mineral Exploration of Shandong Province, Linyi 276000, Shandong, China
    2. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2021-05-24 Online:2022-08-20 Published:2022-08-24

摘要:

在复合地层中, 全断面硬岩隧道掘进机(tunnel boring machine, TBM)在施工时由于隧道埋深较大, 开挖后的隧道周围土体应力重分布, 导致周围岩石会产生向洞内挤压而使管片受到破坏。利用大型有限元数值软件ANSYS和有限差分软件FLAC3D对下穿地层段进行模拟, 综合分析隧道施工管片的应力、应变等, 提出合理的监测方法和保护措施。研究表明: 在仅考虑双隧道施工后地层应力重分布对衬砌管片的影响时建议双隧道同时施工, 管片位移受隧道施工的方向影响较小; 在施工过程中双隧道管片两相邻侧会发生较大水平位移, 必要时需要对管片内侧进行监测和加固等措施。

关键词: 地铁隧道, 管片变形, 受力特征, 数值模拟, 影响分析, TBM

Abstract:

Based on the redistribution of soil stress around the excavated tunnel due to the large buried depth of the tunnel during the construction of the composite stratum by the full section hard rock tunnel boring machine (TBM), considering that the surrounding rocks would produce the force of squeezing into the tunnel, segment damage might occur in the tunnel construction. The large-scale finite element numerical software ANSYS and finite difference software FLAC3D were used to simulate the underpass formation. The stress and strain of tunnel construction segments were comprehensively analyzed, and reasonable monitoring methods and protection measures were put forward. The main conclusions were as follows, when only considering the influence of stratum stress redistribution on lining segments after double tunnel construction, it was suggested that double tunnels should be constructed at the same time, and the displacement of segments was less affected by the direction of tunnel construction; In the construction process, the two adjacent sides of the double tunnel segment would have large horizontal displacement. If necessary, the inner side of the segment should be monitored and reinforced.

Key words: subway tunnel, segment deformation, mechanical characteristics, numerical simulation, impact analysis, TBM

中图分类号: 

  • U455.4

图1

数值计算模型"

表1

地层与建筑物材料参数表"

地层 密度/(kg·m-3) 弹性模量/MPa 泊松比 黏聚力/kPa 内摩擦角/(°)
素填土 1800 3 0.20 10 20.0
粉质黏土 2200 60 0.25 26 30.0
强风化花岗岩 2630 36 000 0.25 300 00 48.0
中风化花岗岩 2680 47 000 0.25 350 00 52.0
微风化花岗岩 2750 58 000 0.25 400 00 55.0
C30混凝土 2400 30 000 0.20
C50混凝土 2500 34 500 0.20

图2

管片水平位移云图"

图3

隧道衬砌结构竖向位移"

图4

管片受力图"

图5

桥中线地面位移图"

1 陈雷. 双护盾TBM穿越断层破碎带地铁隧道施工技术[J]. 建材与装饰, 2020, (3): 270- 271.
doi: 10.3969/j.issn.1673-0038.2020.03.199
CHEN Lei . Construction technology of metro tunnel with double shield TBM crossing fault fracture zone[J]. Building Materials and Decoration, 2020, (3): 270- 271.
doi: 10.3969/j.issn.1673-0038.2020.03.199
2 翟淑芳, 曹世豪, 冯永, 等. 断续节理岩体的TBM滚刀破岩机理研究[J]. 郑州大学学报(工学版), 2020, 41 (1): 20- 24.
ZHAI Shufang , CAO Shihao , FENG Yong , et al. Study on rock breaking mechanism of TBM hob in intermittent jointed rock mass[J]. Journal of Zhengzhou University (Engineering Edition), 2020, 41 (1): 20- 24.
3 李国辉, 廉世卿. TBM隧洞前方不良地质精细化探测方法及应用[J]. 东北水利水电, 2020, 38 (1): 60- 62.
LI Guohui , LIAN Shiqing . Fine detection method and application of unfavorable geology in front of TBM tunnel[J]. Northeast Water Resources and Hydropower, 2020, 38 (1): 60- 62.
4 丁传全. 软弱地层敞开式TBM大规模塌方成因及处理措施研究[J]. 铁道建筑技术, 2020, (1): 97- 101.
DING Chuanquan . Study on causes and treatment measures of large-scale collapse of open TBM in weak stratum[J]. Railway Construction Technology, 2020, (1): 97- 101.
5 包广昌. TBM施工隧洞中超前地质预报的应用研究[J]. 设备管理与维修, 2020, (8): 128- 129.
BAO Guangchang . Study on Application of geological prediction before construction in TBM tunnel[J]. Equipment Management and Maintenance, 2020, (8): 128- 129.
6 肖明清, 张忆, 薛光桥. 盾构法隧道管片环缝面不平整对结构受力影响研究[J]. 隧道建设(中英文), 2020, 40 (2): 153- 161.
XIAO Mingqing , ZHANG Yi , XUE Guangqiao . Study on the influence of uneven circumferential joint surface of shield tunnel segment on structural stress[J]. Tunnel Construction (Chinese and English), 2020, 40 (2): 153- 161.
7 龚琛杰, 阳军生, 傅金阳. 复合岩层大直径越江盾构隧道管片施工裂损特征及影响因素分析[J]. 现代隧道技术, 2020, 57 (5): 30- 42.
GONG Chenjie , YANG Junsheng , FU Jinyang . Analysis of segment construction crack characteristics and influencing factors of large-diameter river crossing shield tunnel in composite rock stratum[J]. Modern Tunnel Technology, 2020, 57 (5): 30- 42.
8 刘凯, 欧小强. 近接交叉大直径盾构隧道施工运营期管片变形及受力研究[J]. 现代隧道技术, 2019, 56 (增刊1): 115- 122.
LIU Kai , OU Xiaoqiang . Study on segment deformation and stress during construction and operation of proximity crossing large diameter shield tunnel[J]. Modern Tunnel Technology, 2019, 56 (Suppl.1): 115- 122.
9 武科, 崔帅帅, 张前进, 等. 新建隧道下穿既有运营地铁施工的力学机理[J]. 江苏大学学报(自然科学版), 2018, 39 (5): 596- 603.
WU Ke , CUI Shuaishuai , ZHANG Qianjin , et al. Mechanical mechanism of new tunnel under existing subway[J]. Journal of Jiangsu University (Natural Science Edition), 2018, 39 (5): 596- 603.
10 武科, 张文, 吴昊天, 等. 上软下硬地层地铁隧道下穿既有城市道路的变形规律及控制措施研究[J]. 现代隧道技术, 2017, 54 (6): 126- 135.
WU Ke , ZHANG Wen , WU Haotian , et al. Study on deformation law and control measures of subway tunnel under existing urban roads in upper soft and lower hard strata[J]. Modern Tunnel Technology, 2017, 54 (6): 126- 135.
[1] 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79.
[2] 刘舫辰,石岩,李元鲁,王湛,杜文静,季万祥. 用于燃煤电厂的低温省煤器前烟道流动及磨损特性[J]. 山东大学学报 (工学版), 2022, 52(3): 100-108.
[3] 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92.
[4] 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41.
[5] 卢光兆,周博,徐锋,上官伟,王刚,张书博. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报 (工学版), 2021, 51(4): 61-70.
[6] 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51.
[7] 王春国. 硬岩隧道施工通风系统优化与抑尘效果评价[J]. 山东大学学报 (工学版), 2021, 51(3): 52-60.
[8] 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38.
[9] 徐再根,刘正伟,刘文棚,周梦瑶,刘俊才,田利. 输电塔单双角钢过渡节点计算方法[J]. 山东大学学报 (工学版), 2021, 51(1): 87-93.
[10] 苏思博,王国清,贾献卓,李志聪,黄志刚. 剪跨比对插槽式连接空心管墩抗震性能影响[J]. 山东大学学报 (工学版), 2021, 51(1): 39-45.
[11] 闫吉庆,王效嘉,田茂诚. 含不凝气蒸汽在锯齿形表面的凝结传热特性[J]. 山东大学学报 (工学版), 2020, 50(6): 129-134.
[12] 祁金胜,曹洪振,石岩,杜文静,王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69, 76.
[13] 陈禹成,王朝阳,郭明,林鹏. 隐伏溶洞对隧道围岩稳定性影响规律及处治技术[J]. 山东大学学报 (工学版), 2020, 50(5): 33-43.
[14] 曹洪振,祁金胜,袁宝强,杜文静,王湛. 偏心方圆节扩散管数值模拟[J]. 山东大学学报 (工学版), 2020, 50(5): 77-82.
[15] 徐振,李德明,王彬,詹谷益,张世杰. 硬岩隧道纯钢纤维混凝土管片应用[J]. 山东大学学报 (工学版), 2020, 50(5): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .