山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 42-46.doi: 10.6040/j.issn.1672-3961.0.2018.346
Yun HU1(),Shu ZHANG2,*(),Hui LI3,4,Kankan SHE1,Jun SHI3
摘要:
基于信任网络的重构问题,提出一种新颖的推荐算法。将用户相似值与信任关系相结合构建初始信任网络,对用户未评分项进行初始预测;利用一种基于可靠性度量方法评价预测评分的质量,对于未评分项目根据新组建的用户信任网络进行最终评分预测。在两个真实数据集Epinions和Flixster上进行了性能验证,试验结果表明,信任网络的重构可以有效解决推荐系统中的数据稀疏问题,在查全率和查准率上优于传统的推荐算法。
中图分类号:
1 | ZAMAN F , ELSAYED S M , RAY T , et al. Configuring two-algorithm-based evolutionary approach for solving dynamic economic dispatch problems[J]. Engineering Applications of Artificial Intelligence, 2016, 53 (1): 105- 125. |
2 | 方耀宁, 郭云飞, 兰巨龙. 基于Logistic函数的贝叶斯概率矩阵分解算法[J]. 电子与信息学报, 2014, 36 (3): 715- 720. |
FANG Yaoning , GUO Yunfei , LAN Juling . A bayesian probabilistic matrix factorization algorithm based on logistic function[J]. Journal of Electronics & Information Technology, 2014, 36 (3): 715- 720. | |
3 | FAYOLLEAYOLLE P A , PASKOASKO A . An evolutionary approach to the extraction of object construction trees from 3D point clouds[M]. Butterworth-Heinemann, 2016. |
4 | SILVA E , CAMILO J , PASCOAL M L , et al. An evolutionary approach for combining results of recommender systems techniques based on collaborative filtering[J]. Expert Systems with Applications, 2016, 53 (2): 204- 218. |
5 | 郭弘毅, 刘功申, 苏波, 等. 融合社区结构和兴趣聚类的协同过滤推荐算法[J]. 计算机研究与发展, 2016, 53 (8): 1664- 1672. |
GUO Hongyi , LIU Gongshen , SU Bo . Collaborative filtering recommendation algorithm combing community structure and interest clusters[J]. Journal of Computer Research and Development, 2016, 53 (8): 1664- 1672. | |
6 | GUO G , ZHANG J , SMITH N Y . Leveraging multiviews of trust and similarity to enhance clustering-based recommender systems[J]. Knowledge-Based Systems, 2017, 74 (1): 14- 27. |
7 | SHEUGH L , ALIZADEH S H . A novel 2D-graph clustering method based on trust and similarity measures to enhance accuracy and coverage in recommender systems[J]. Information Sciences, 2018, 432 (1): 210- 230. |
8 | 涂丹丹, 舒承椿, 余海燕. 基于联合概率矩阵分解的上下文广告推荐算法[J]. 软件学报, 2015, (3): 454- 464. |
TU Dandan , SHU Chengchun , YU Haiyan . Using unified probabilistic matrix factorization for contextual advertisement recommendation[J]. Journal of Software, 2015, (3): 454- 464. | |
9 |
XU J , ZHONG Y , ZHU W . Trust-based context-aware mobile social network service recommendation[J]. Wuhan University Journal of Natural Sciences, 2017, 22 (2): 149- 156.
doi: 10.1007/s11859-017-1228-3 |
10 | SHI L , ZHAO W X , SHEN Y D . Local representative-based matrix factorization for cold-start recommendation[J]. Acm Transactions on Information Systems, 2017, 36 (2): 1- 28. |
11 | PIRASTEH P , HWANG D , & JUNG J . Exploiting matrix factorization to asymmetric user similarities in recommendation systems[J]. Knowledge-Based Systems, 2016, 83 (1): 51- 57. |
12 | FERNANDES B R , PLA F . Incremental probabilistic latent semantic analysis for video retrieval[J]. Image & Vision Computing, 2015, 38 (1): 1- 12. |
13 | YIN J , HO Q , XING E P . A scalable approach to probabilistic latent space inference of large-scale networks[J]. Advances in Neural Information Processing Systems, 2013, 2013 (1): 422- 430. |
14 |
FITZGERALD J , GAMBLE C , PAYNE R , et al. Collaborative model-based systems engineering for cyber-physical systems, with a building automation case study[J]. Incose International Symposium, 2016, 26 (1): 817- 832.
doi: 10.1002/iis2.2016.26.issue-1 |
15 | FEINBERG E A , KASYANOV P O , ZGUROVSKY M Z . Partially observable total-cost markov decision processes with weakly continuous transition probabilities[J]. Mathematics of Operations Research, 2016, 41 (2): 591- 607. |
16 |
MORADI P , AHMADIAN S . A reliability-based recommendation method to improve trust-aware recommender systems[J]. Expert Systems with Applications, 2015, 42 (21): 7386- 7398.
doi: 10.1016/j.eswa.2015.05.027 |
17 | NAZEMIN A, GHOLAMI H, TAGHIYAREH F. An improved model of trust-aware recommender systems using distrust metric[C]//International Conference on Advances in Social Networks Analysis and Mining. Istanbul, Turkey: IEEE, 2012: 1079-1084. |
18 | DENG S , HUANG L , XU G . Social network-based service recommendation with trust enhancement[J]. Expert Systems with Applications, 2014, 41 (2): 8075- 8084. |
19 | YANG X , GUO Y , LIU Y . Bayesian-inference-based recommendation in online social networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 24 (4): 642- 651. |
20 | GUO G , ZHANG J , THALMAN D . Merging trust in collaborative filtering to alleviate data sparsity and cold start[J]. Knowledge-Based Systems, 2014, 57 (1): 57- 68. |
[1] | 钱春琳,张兴芳,孙丽华. 基于在线评论情感分析的改进协同过滤推荐模型[J]. 山东大学学报 (工学版), 2019, 49(1): 47-54. |
[2] | 何文杰 ,何伟超,孙权森. 压缩感知重构算法的并行化及GPU加速[J]. 山东大学学报(工学版), 2018, 48(3): 110-114. |
[3] | 读习习,刘华锋,景丽萍. 一种融合社交网络的叠加联合聚类推荐模型[J]. 山东大学学报(工学版), 2018, 48(3): 96-102. |
[4] | 邓俊武,张玉民,张红娣,杜晓坤. X尾翼无人机的故障诊断和容错控制方法[J]. 山东大学学报(工学版), 2017, 47(5): 166-172. |
[5] | 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194. |
[6] | 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222. |
[7] | 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237. |
[8] | 王鑫,陆静雅,王英. 面向推荐的用户兴趣扩展方法[J]. 山东大学学报(工学版), 2017, 47(2): 71-79. |
[9] | 王志强,文益民,李芳. 基于多方面评分的景点协同推荐算法[J]. 山东大学学报(工学版), 2016, 46(6): 54-61. |
[10] | 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20. |
[11] | 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36. |
[12] | 侯燕,杨猛. 高效解决复杂拓扑问题的显式界面追踪算法[J]. 山东大学学报(工学版), 2016, 46(4): 15-20. |
[13] | 李朔,石宇良. 基于位置社交网络中地点聚类推荐方法[J]. 山东大学学报(工学版), 2016, 46(3): 44-50. |
[14] | 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73. |
[15] | 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43. |
|