山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 29-36.doi: 10.6040/j.issn.1672-3961.2.2015.008
黄丹,王志海,刘海洋
HUANG Dan, WANG Zhihai, LIU Haiyang
摘要: 基于矩阵分解模型、时间因素和排名模式,提出一种局部协同过滤的排名推荐算法,并放松用户对项目的评分矩阵是低秩的这一假设,假设用户对项目的评分矩阵是局部低秩的,即评分矩阵在某个用户项目序偶的近邻空间内是低秩的。修改信息检索中常用的评价指标平均倒数排名(mean reciprocal rank, MRR)函数,使其适合评分数据集合,然后对其进行平滑化操作和简化操作,最后直接优化这一评价指标。提出的算法易于并行化,可以在大型的真实数据集合上运行。试验结果表明该算法能提升推荐的性能。
中图分类号:
[1] LYU L Y, MEDO M, YEUNG C H, et al. Recommender systems[J]. The Journal of Physics Reports, 2012, 519(1):1-50. [2] RICCI F, ROKACH L, SHAPIRA B, et al. Recommender systems handbook[M]. Berlin, Germany: Springer-Verlag, 2011. [3] LEE D, SEUNG H. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing System, 2001, 32(6):556-562. [4] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[J]. Advances in Neural Information Processing Systems, 2012:1257-1264. [5] SALAKHUTDINOV R, MNIH A. Bayesian probabilistic matrix factorization using markov chain monte carlo[C] // Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008:880-887. [6] LEE J, KIM S, LEBANON G, et al. Local low-rank matrix approximation[J]. Journal of Machine Learning Research, 2013, 28(2):82-90. [7] KOREN Y. Factor in the neighbors: Scalable and accurate collaborative filtering[J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(1):1-24. [8] CREMONESI P, KOREN Y, TURRIN R. Performance of recommender algorithms on top-n recommendation tasks[C] //Proceedings of the fourth ACM Conference on Recommender Systems. New York, USA: ACM, 2013:39-46. [9] DING Y, LI X. Time weight collaborative filtering[C] //Proceedings of the 14th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2005:485-492. [10] GONG S J, CHENG G H. Mining user interest change for improving collaborative filtering[C] //Proceedings of the 2008 Second International Symposium on Intelligent Information Technology Application. Washington DC, USA: IEEE Computer Society, 2008:24-27. [11] LEE T Q, PARK Y, PARK Y T. A time-based approach to effective recommender systems using implicit feedback[J]. Expert Systems with Applications, 2008, 34(4): 3055-3062. [12] BURGES C, SHAKED T, RENSHAW E, et al. Learning to rank using gradient descent[C] //Proceedings of the 22nd International Conference on Machine Learning. New York, USA: ACM, 2005:89-96. [13] RENDLE S, FREUDENTHALER C. Improving pairwise learning for item recommendation from implicit feedback[C] //Proceedings of the 7th ACM International Conference on Web Search and Cata Mining. New York, USA: ACM, 2014:273-282. [14] CAO Z, QIN T, LIU T Y, et al. Learning to rank: from pairwise approach to listwise approach[C] //Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007:129-136. [15] XU J, LIU T Y, LU M, et al. Directly optimizing evaluation measures in learning to rank[C] //Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2008: 107-114. [16] WEIMER M, KARATZOGLOU A, LE Q V, et al. CofiRank-maximum margin matrix factorization for collaborative ranking[C] //Neural Information Processing Systems. Vancouver, Canada: ACM, 2007:3-8. [17] SHI Y, KARATZOGLOU A, BALTRUNAS L, et al. TFMAP: optimizing map for top-n context-aware recommendation[C] //Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2012:155-164. [18] SHI Y, KARATZOGLOU A, BALTRUNAS L, et al. CLIMF: learning to maximize reciprocal rank with collaborative less-is-more filtering[C] //Proceedings of the Sixth ACM Conference on Recommender Systems. New York, USA: ACM, 2012:139-146. [19] KABBUR S, XIA N, KARYPIS G. FISM: factored item similarity models for top-N recommender systems[C] //Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2010: 659-667. [20] GROUPLENS. Datasets Instruction[EB/OL]. [2015-04-15]. http://grouplens.org/datasets/movielens. [21] LEE J, SUN M, LEBANON G. PREA [EB/OL].(2013-06-13)[2015-04-10]. http://prea.gatech.edu/download.html#ver20. [22] LEE J, SUN M, LEBANON G. PREA: personalized recommendation algorithms toolkit[J]. The Journal of Machine Learning Research, 2012, 13(1):2699-2703. |
[1] | 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20. |
[2] | 李朔,石宇良. 基于位置社交网络中地点聚类推荐方法[J]. 山东大学学报(工学版), 2016, 46(3): 44-50. |
[3] | 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73. |
[4] | 张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50. |
[5] | 孙远帅,陈垚,刘向荣,陈珂,林琛. 基于项目层次相似性的推荐算法[J]. 山东大学学报(工学版), 2014, 44(3): 8-14. |
[6] | 陈大伟,闫昭*,刘昊岩. SVD系列算法在评分预测中的过拟合现象[J]. 山东大学学报(工学版), 2014, 44(3): 15-21. |
[7] | 李改1,2,3, 李磊2,3. 一种解决协同过滤系统冷启动问题的新算法[J]. 山东大学学报(工学版), 2012, 42(2): 11-17. |
[8] | 李国栋,赵威,田国会*,薛英花. 一种基于旋转矩阵分解的视觉伺服控制算法[J]. 山东大学学报(工学版), 2012, 42(1): 45-50. |
[9] | 王爱国,李廉*,杨静,陈桂林. 一种基于Bayesian网络的网页推荐算法[J]. 山东大学学报(工学版), 2011, 41(4): 137-142. |
|