山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 47-53.doi: 10.6040/j.issn.1672-3961.0.2018.194
摘要:
针对约束优化算法不能很好协调收敛性及分布性的问题,提出一种基于正态分布和自适应变异算子的ε截断算法。将正态分布引入模拟二进制交叉算子中,使算法可搜索的空间范围更广,更易跳出局部最优;利用自适应变异算子,将种群个体当前信息与变异算子结合起来,引导种群向真实的Pareto前沿进行进化;结合自适应的ε截断策略,保留Pareto最优解和一定数量的不可行解,同时利用不可行解的信息,加大对搜索空间的探索力度,从而提高种群多样性。采用3种标准测试函数对算法进行测试,试验结果表明:本研究所求解集能够很好的跟踪真实的Pareto解集。该方法可以有效地协调算法的收敛性及分布性。
中图分类号:
1 |
ASAFUDDOULA M , RAY T , SARKER R . A decomposition-based evolutionary algorithm for many objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19 (3): 445- 460.
doi: 10.1109/TEVC.2014.2339823 |
2 |
YANG S , LI M , LIU X , et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17 (5): 721- 736.
doi: 10.1109/TEVC.2012.2227145 |
3 |
MATIAS J , CORREIA A , MESTRE P , et al. Adaptive penalty and barrier function based on fuzzy logic[J]. Expert Systems with Applications, 2015, 42 (19): 6777- 6783.
doi: 10.1016/j.eswa.2015.04.070 |
4 | ELHOSSINI A , AREIBI S , DONY R . Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization[J]. Evolutionary Computation, 2014, 18 (1): 127- 156. |
5 | YANG D , JIAO L , GONG M . Adaptive multi-objective optimization based on nondominated solutions[J]. Computational Intelligence, 2010, 25 (2): 84- 108. |
6 | LIN C H . A rough penalty genetic algorithm for constrained optimization[J]. Information Sciences, 2013, 241 (241): 119- 137. |
7 | MEZURAMONTES E , COELLO C A C . A simple multimembered evolution strategy to solve constrained optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2005, 9 (1): 1- 17. |
8 | WANG Y , CAI Z , GUO G , et al. Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems[J]. IEEE Transactions on Systems Man & Cybernetics Part B, 2007, 37 (3): 560- 575. |
9 |
LEMONGE A C C , BARBOSA H J C , BERNARDINO H S . Variants of an adaptive penalty scheme for steady-state genetic algorithms in engineering optimization[J]. Engineering Computations, 2015, 32 (8): 2182- 2155.
doi: 10.1108/EC-07-2014-0158 |
10 | DEB K . An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics & Engineering, 2000, 186 (2): 311- 338. |
11 |
CAI Zixing , WANG Yong . A multiobjective optimization-based evolutionary algorithm for constrained optimization[J]. Evolutionary Computation, IEEE Transactions on, 2006, 10 (6): 658- 675.
doi: 10.1109/TEVC.2006.872344 |
12 | WANG Yong , CAI Zixing , ZHOU Yuren , et al. An adaptive tradeoff model for constrained evolutionary optimization[J]. Evolutionary Computation, IEEE Transactions on, IEEE Transactions on, 2008, 12 (1): 80- 92. |
13 |
WOLDESENBET Y G , Yen G G , TESSEMA B G . Constraint handling in multiobjective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13 (3): 514- 525.
doi: 10.1109/TEVC.2008.2009032 |
14 | 王勇, 蔡自兴, 周育人, 等. 约束优化进化算法[J]. 软件学报, 2009, 20 (1): 11- 29. |
WANG Yong , CAI Zixing , ZHOU Yuren , et al. Constrained optimization evolutionary algorithms[J]. Journal of Software, 2009, 20 (1): 11- 29. | |
15 | 李智勇, 黄滔, 陈少淼, 等. 约束优化进化算法综述[J]. 软件学报, 2017, 28 (6): 1529- 1546. |
LI Zhiyong , HUANG Tao , CHEN Shaomiao , et al. Overview of constrained optimization evolutionary algorithms[J]. Journal of Software, 2017, 28 (6): 1529- 1546. | |
16 | 张敏.约束优化和多目标优化的进化算法研究[D].合肥:中国科学技术大学, 2008. |
ZHANG Min. Research on evolutionary algorithms for constrained optimization and multiobjective optimization[D]. Hefei: University of Science and Technology of China, 2008. | |
17 | 肖易寒, 李明逵, 陈立伟. 基于改进NSGA-Ⅱ算法的多光谱测温数据处理[J]. 应用科技, 2017, 44 (1): 33- 39. |
XIAO Yihan , LI Mingkui , CHEN Liwei . Multispectral temperature measurement based on improved adaptive NSGA-Ⅱ algorithm[J]. Applied Science and Technology, 2017, 44 (1): 33- 39. | |
18 | 毕晓君, 张磊. 基于自适应ε截断策略的约束多目标优化算法[J]. 电子与信息学报, 2016, 38 (8): 2047- 2053. |
BI Xiaojun , ZHANG Lei . Constrained multi-objective optimization algorithm with adaptive ε truncation strategy[J]. Journal of Electronics & Information Technology, 2016, 38 (8): 2047- 2053. | |
19 | DEB K, PRATAP A, MEYARIVAN T. Constrained test problems for multi-objective evolutionary optimization[C]//Proceedings of First International Conference on Evolutionary Multi-Criterion Optimization, EMO 2001, Zurich, Switzerland: EMO, 2001: 284-298. |
20 | 韩红艳.基于Pareto支配的高维多目标进化算法研究[D].大连:大连理工大学, 2016. |
HAN Hongyan. Research of Pareto dominance based many-objective evolutionary algorithm[D]. Dalian: Dalian University of Technology, 2016. | |
21 | JIANG S , YANG S . A steadystate and generational evolutionary algorithm for dynamic multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21 (1): 65- 82. |
[1] | 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报 (工学版), 2018, 48(5): 9-15, 37. |
[2] | 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9. |
[3] | 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133. |
[4] | 刘志清,高浩瀚,安沫霖,张学凯. 基于完工概率修正的关键链法项目进度优化[J]. 山东大学学报(工学版), 2018, 48(1): 104-111. |
[5] | 刘大琨,谭晓阳. 基于流形的约束局部模型拟合[J]. 山东大学学报(工学版), 2016, 46(3): 31-36. |
[6] | 韩忠明, 吴杨, 谭旭升, 刘雯, 杨伟杰. 社会网络结构洞节点度量指标比较与分析[J]. 山东大学学报(工学版), 2015, 45(1): 1-8. |
[7] | 王兴良,王立宏*,李海军. 谱聚类中特征向量的Bagging选取方法[J]. 山东大学学报(工学版), 2013, 43(2): 35-41. |
[8] | 张潇丹,赵力,邹采荣*. 一种改进的混合蛙跳算法求解有约束优化问题[J]. 山东大学学报(工学版), 2013, 43(1): 1-8. |
[9] | 何荣福1,肖民卿2*. 圆形区域极点约束下的δ算子时滞系统鲁棒L2-L∞控制[J]. 山东大学学报(工学版), 2013, 43(1): 69-79. |
[10] | 徐姗姗,刘应安*,徐昇. 立体匹配中边界信息的强化算法[J]. 山东大学学报(工学版), 2012, 42(6): 43-49. |
[11] | 丁彦,李永忠*. 基于PCA和半监督聚类的入侵检测算法研究[J]. 山东大学学报(工学版), 2012, 42(5): 41-46. |
[12] | 潘志远1, 韩学山1*, 刘超男2. 交流潮流约束下的机组组合求解[J]. 山东大学学报(工学版), 2012, 42(2): 130-137. |
[13] | 张友新,王立宏. 两阶段近邻传播半监督聚类算法[J]. 山东大学学报(工学版), 2012, 42(2): 18-22. |
[14] | 颜子夜,陆耀,李建武,马跃. 一种基于核主成分分析的图像超分辨率算法[J]. 山东大学学报(工学版), 2011, 41(4): 101-105. |
[15] | 李军辉. 一种实现延时无源宏模型的快速方法[J]. 山东大学学报(工学版), 2011, 41(3): 59-61. |
|